摘要 脑电图 (EEG) 因其出色的时间分辨率和较差的空间分辨率而被应用于情绪识别。这导致大多数基于 EEG 的情绪识别模型强调利用时间特征而忽略了空间分辨率提供的有效信息。为了提取更具信息量的表示,我们提出了一种用于情绪识别的弹性图 Transformer 网络 (EmoGT),其灵感来自 Transformer 在时间序列分析方面的优势和图卷积网络在拓扑分析中的卓越性能。此外,通过采用专门设计的结构,它可以灵活扩展以应对多模态输入。在 3 个公共数据集上的实验结果表明,我们的模型在单模态和多模态情况下平均比最新结果高出 3%,表明了同时利用时间和空间信息的有效性。
在此背景下,我们将对使用 EEG 进行词语识别的最新技术进行全面的研究。我们将研究不同的信号采集技术、EEG 信号处理以及神经网络在该领域中的应用。此外,还将提出利用 3D 打印技术设计和开发用于捕捉脑电图信号的头带。该头带将配备干电极,通过收集真实信号来评估其性能。同样,我们将分析文献中提供的一对数据集,并将其与 BCI 系统本身的实现进行比较。最后,将根据结果和分析得出可靠的结论。
摘要 - 情感识别对于各种精神疾病的诊断和康复至关重要。在过去的十年中,由于其突出的准确性和可靠性,对基于脑电图(EEG)的情绪识别进行了深入研究,并且图形卷积网络(GCN)已成为解释EEG信号的主流模型。然而,尽管已证明这种关系在情感识别中很重要,但电极关系,尤其是整个头皮的远距离触发依赖性。小型接受领域仅使较浅的GCN仅聚集局部淋巴结。另一方面,堆叠太多的层会导致过度光滑。为了解决这些问题,我们提出了锥体图卷积网络(PGCN),该网络汇总了三个级别的特征:局部,中镜和全局。首先,我们基于电极的3D拓扑关系构建一个香草GCN,该拓扑关系用于整合两阶局部特征。其次,我们基于先验知识构建了几个介观脑区域,并采用介观的关注来依次计算虚拟的介观中心,以关注介观脑区域的功能连接;最后,我们融合了节点特征及其3D位置,以构建数值关系邻接矩阵,以从全局的角度整合结构和功能连接。在三个公共数据集上的实验结果表明,PGCN在头皮上增强了关系模式,并在受试者独立的场景和主题独立的方案中实现了最先进的性能。同时,PGCN在增强网络深度和接受领域之间做出了有效的权衡,同时抑制了随之而来的过度光滑。我们的代码可在https://github.com/jinminbox/pgcn上公开访问。
Debio 0432是临床前阶段的USP1抑制剂。该分子预计将在变构袋中结合USP1,并且在DUB家族的58个成员中非常有选择性。DEBIO 0432 USP1上的生化活性低于1NM低于1NM,比其他USP1抑制剂(KSQ-4279/RG-6614)高20倍。单一疗法活性。在体内,Debio 0432显示了BRCA突变乳腺癌模型MDA-MB-436和BRCA WT NCI-H292肺癌模型中的抗肿瘤活性。以剂量和血浆暴露依赖性方式调节下游目标UB-PCNA,被选为药效标记。进一步的患者衍生异种移植物(PDX)模型的体内实验显示了不同癌症类型的抗肿瘤活性。在活性剂量时,所有体内研究中的治疗方法都得到很好的耐受性。
在所有情感识别任务的解决方案中,脑电图(EEG)是一种非常有效的工具,并受到了研究人员的广泛关注。此外,脑电图中多媒体的信息通常提供了更完整的情感图片。,很少有现有研究同时合并来自时间域,频域和功能性脑连接性的脑电图信息。在本文中,我们提出了一个多域自适应图卷积网络(MD-AGCN),融合了频域和时间域的知识,以充分利用EEG信号的互补信息。md-agCN还通过将通道间相关性与通道内信息相结合,从而考虑了脑电图通道的拓扑,从中可以以自适应方式学习功能性大脑的连接。广泛的实验结果表明,在大多数实验环境中,我们的模型超过了最先进的方法。同时,结果表明,MD-AGCN可以有效地提取互补的域信息,并利用基于EEG的情绪识别的信道关系。
摘要 - 图卷积网络(GCN)最近进行了研究,以利用人体的图形拓扑用于基于骨架的动作识别。然而,不幸的是,大多数这些方法是通过动摇的各种动作样本的易加色模式汇总信息,缺乏对级别内部品种的认识和对骨架序列的适当性,这些骨骼序列通常包含冗余甚至有害连接。在本文中,我们提出了一个新型的可变形图卷积网络(DEGCN),以适应性地捕获最有用的关节。拟议的DEGC在空间图和时间图上学习了可变形的采样位置,从而使模型能够感知歧视性接受领域。值得注意的是,考虑到人类的作用本质上是连续的,相应的时间特征是在连续的潜在空间中定义的。此外,我们设计了创新的多分支框架,该框架不仅在准确性和模型大小之间进行了更好的权衡,而且还可以显着提高集合的效果。广泛的实验表明,我们提出的方法在三个广泛使用的数据集上实现了最新的性能,即NTU RGB+D,NTU RGB+D 120和NW-UCLA。
面部表达识别(FER)在计算机视觉应用中起着关键作用,包括视频不存在和人类计算机的相互作用。尽管FER的进展没有局部进步,但在处理在现实世界情景和数据集中遇到的低分辨率面部图像时,性能仍然会摇摆不定。一致性约束技术引起了人们的关注,以产生强大的卷积神经网络模型,从而通过增强来适应变化,但它们的功效在低分辨率FER的领域中得到了影响。这种性能下降可以归因于网络难以提取表达特征的增强样本。在本文中,我们确定了在考虑各种程度的分辨率时引起过度拟合问题的硬样品,并提出了新颖的硬样品感知一致性(HSAC)损失函数,其中包括组合注意力同意和标签分布学习。通过结合高分辨率和翻转低分辨率图像的激活图,将注意力图与适当的目标注意图与适当的目标注意图与适当的目标注意力图相结合的注意图与适当的目标注意力图的注意力图对齐。我们通过结合原始目标和高分辨率输入的预测来测量低分辨率面部图像的分类难度,并适应标签分布学习。我们的HSAC通过有效管理硬样品来赋予网络能够实现概括。各种FER数据集上的广泛实验证明了我们提出的方法比现有方法的多尺度低分辨率图像的优越性。此外,我们在原始RAF-DB数据集中达到了90.97%的最新性能。
隐身光学对抗性示例攻击,利用了凸轮的滚动快门效果,以欺骗自动驾驶汽车中的交通标志识别。互补的金属氧化物半导体(CMOS)传感器在汽车摄像机中广泛采用[1,2]。他们通常从上到下透露并读出像素值。但是,CMOS摄像机表现出滚动快门效果(RSE)[4]。具体来说,当CMOS传感器的每一行暴露在略有不同的时间时,输入光的快速变化会通过扫描线的各种颜色阴影引起图像失真。重新研究[6-8]已经显示了RSE的安全性含义,即攻击者可以控制输入光,以在捕获的图像上创建彩色条纹,以误导计算机视觉解释。然而,尽管以前的研究已经在受控环境中实现了单帧的基本rse,但它们无法通过一系列框架实现稳定的攻击结果[5]。GhostStripe旨在实现稳定的攻击结果,从而在自主驾驶环境中更清晰的安全含义。首先,它在交通标志附近部署LED,将受控的闪烁光投射到标志上。由于闪烁的频率超过了人眼的感知极限,因此它仍然是看不见的,使LED显得良性。同时,由摄像机误导了交通标志识别的RSE引起的彩色条纹。没有这种稳定性,异常检测器可能会触发故障机制,从而确定攻击的有效性。1。第二,为了误导自主驾驶计划以在不知不觉中进行错误的决定,交通符号识别结果应该是错误的,并且在足够的连续框架之间相同。随着车辆的移动,摄像机视野中包含标志(FOV)变化的签名的位置和大小变化,需要攻击才能适应摄像机操作和车辆运动,以稳定地覆盖条纹,如图所示。为了实现这一目标,GhostStripe根据受害者的实时感知结果来控制LED闪烁
科学研究和分析基于环境机构所做的一切。它有助于我们有效理解和管理环境。我们自己的专家与领先的科学组织,大学和Defra集团的其他部分合作,将最佳知识带入我们现在和将来面临的环境问题。我们的科学工作作为摘要和报告发表,所有人都可以免费获得。本报告是环境局首席科学家小组委托研究的结果。您可以在https://www.gov.uk/government/organisation/environment-agency/about/research上找到有关我们当前的科学计划的更多信息,如果您对此报告或环境局的其他科学工作有任何评论或疑问,请与Research@envorirnment-agencency.gov.uk联系。