2024 年 6 月,Séché Environnement 宣布收购新加坡危险工业废物市场领先企业 ECO Industrial Environmental Engineering Pte Ltd(“ECO”)。凭借最广泛的产品和服务、核心行业的忠实客户群以及最新的高性能工业设施,ECO 将使 Séché Environnement 在一个充满活力的工业地区占据重要地位,而此前该集团在该领域并不活跃。ECO 是危险废物循环经济领域的主要参与者,它将在集团引领转型的使命中发挥重要作用,提供废物管理服务、材料回收副产品交易、拆除和净化,以及诸如合成气生产中产生的炭黑废物处理或活性炭回收 3 等利基活动。
关于 Rain Carbon Inc. Rain Carbon Inc. 是一家领先的垂直整合全球碳基产品生产商,其产品是日常生活必需品的必需原材料。我们分为两个业务部门:碳和先进材料。我们的碳业务部门将石油精炼和钢铁生产的副产品升级为高价值的碳基产品,这些产品是铝、石墨电极、炭黑、木材防腐、二氧化钛、耐火材料和其他几个全球行业的关键原材料。我们的先进材料业务部门通过将部分碳产量和其他原材料进行创新的下游转化,将其转化为高价值、环保和先进材料产品,延伸了碳加工的价值链,这些产品是特种化学品、涂料、建筑、汽车、石油和其他几个全球行业的关键原材料。有关 Rain Carbon 的更多信息,请访问 www.raincarbon.com。
炭黑用于多种材料组中,以增强其物理,电气和光学特性。其最大的批量用途是作为橡胶产品中的增强和穿孔添加剂。在橡胶复合,天然和合成的弹药中,将碳黑色,埃勒曼硫硫,加工油和各种有机加工化学品混合在一起,然后加热以生产各种硫化橡胶产品。在这些应用中,碳黑色提供了加固并改善韧性,泪液强度,电导率和其他物理特性。碳黑色是轮胎组件(例如胎面,侧壁和内部衬里),机械橡胶商品(“ MRG”)的轮胎组件(例如胎面,侧壁和内部衬里)中最广泛使用和成本效益的橡胶固定剂(通常称为橡胶碳黑色)橡胶商品(例如软管,皮带,垫圈和密封件)。
本文报道了一种环保的锂对苯二甲酸/聚乳酸 (Li 2 TP/PLA) 复合细丝的开发,该细丝通过熔融沉积成型 (FDM) 进行 3D 打印后可用作锂离子电池的负极。通过在挤出机内直接引入合成的 Li 2 TP 颗粒和 PLA 聚合物粉末,实现了 3D 可打印细丝的无溶剂配方。通过加入平均 M n ∼ 500 的聚乙二醇二甲醚 (PEGDME500) 作为增塑剂,提高了可打印性,而通过引入炭黑 (CB) 则提高了电性能。彻底讨论了热、电、形态、电化学和可打印性特性。通过利用 3D 打印切片软件功能,提出了一种创新方法来改善 3D 打印电极内的液体电解质浸渍。© 2021 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/ by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/abedd4]
摘要:通过在薄 AuAl 2 膜中发射表面等离子体 (SP),我们确认金属间化合物 AuAl 2 的异常紫色是由等离子体引起的。我们测量了 SP 色散关系,还使用标准 SP 共振传感技术使用这些薄膜测量了蔗糖溶液的折射率。我们发现平面 AuAl 2 中的 SP 能量约为 2.1 eV,比金低约 0.4 eV,并且该材料具有很强的抗氧化性。这与之前报道的 AuAl 2 介电函数测量结果接近。在此基础上,我们预测 AuAl 2 纳米粒子将具有非常强的、光谱几乎均匀的光吸收率,比标准炭黑高出大约一个数量级。因此,此类粒子可能在光热疗法或太阳能蒸汽生成或等离子体催化等领域中用作遮蔽剂或替代更复杂的吸光金结构。
图 2. 在锂/聚合物电解质/阴极电池格式中减少阳极处过量锂的影响。 (A、C) 凝胶聚合物电解质和干 PEO+LiTFSi 电解质的充电/放电电压曲线,分别具有厚(~600 µm)锂阳极。 (B、D) 凝胶聚合物电解质和干 PEO+LiTFSi 电解质的充电/放电电压曲线,分别具有薄(~13 µm 厚)锂阳极。 阴极是 NMC811,含炭黑,PEO+LiTFSi 作为粘合剂和阴极电解液。 使用的电流密度为 C/20(C 速率基于 NMC811 的 200 mAh/g 容量计算,直至 4.3 V vs. Li/Li + )。 电压限制为 3.0 - 4.3 V。 所有循环均在 70 °C 下进行。 (E) 放电容量,标准化为第一次循环的放电容量,作为循环数的函数。注意:厚 Li|Gel PE|NMC811 电池随后短路,因此仅显示五个数据点(如 a 所示)。
图表目录 图 1 选定地区使用天然气生产氢气的成本 ...................................................................................... 2 图 2 甲烷热解技术的主要参与者 .............................................................................................. 5 图 3 美国 M/s Monolith Materials 公司开发的甲烷热解工艺图形表示 ............................................................................................. 6 图 4 碳氢化合物热转化过程中碳颗粒形成的时间顺序 ............................................................................................. 9 图 5 不同形式碳的全球市场规模和单位销售价格 ............................................................................................. 10 图 6 通过满足各种形式碳需求来生产氢气的潜力 ............................................................................. 10 图 7 炭黑销售价格对小规模等离子体净氢成本的敏感性 ............................................................................. 11 11 图 8 世界甲烷热解技术发展时间轴 ...................................................................................................... 14 图 9 美国内布拉斯加州 Monolith Materials 公司的商业化规模设施 Olive Creek1(OC1) ................................................................................................................................ 15 图 10 巴斯夫公司甲烷热解技术商业化之路 ............................................................................................................. 16 图 11 TNO 公司甲烷热解技术商业化计划 ............................................................................................................. 16 图 12 Hazer 工艺示意图 ............................................................................................................................. 17
直接回收是实现废旧锂离子电池 (LIB) 循环经济的关键技术。对于正极活性材料 (CAM),它被认为是当前回收技术中最紧密的闭环和最有效的方法,因为它只是通过重新锂化和重建老化的 CAM 来进行,而不是将它们分离成元素成分。在本研究中,通过模拟原始 CAM 合成的条件来恢复基于 LiNi 0.83 Co 0.12 Mn 0.05 O 2 (NCM-831205) 的废旧 CAM,即形态和结构分解的 CAM。在评估和优化 CAM 恢复的高温持续时间和随后的清洗程序后,回收的 CAM 显示出保持多晶性和振实密度,成功恢复比表面积、锂含量、表面和本体的晶体结构,但仅部分恢复原始的二次粒度和形状。虽然在最初的 100 次充电/放电循环中,锂离子电池中的原始 CAM 可与原始 CAM 相媲美,但随后的电阻增加和容量衰减仍然是一个挑战。回收过程中的高温可视为材料层面的一个关键挑战,因为它不仅会促进残留炭黑中有害的表面碳酸盐物种,还会通过氧气释放增强阳离子无序性和微/纳米孔隙率,这很可能发生在脱锂、因此热稳定性较差的循环 NCM 区域。
摘要:人们对 3D 打印在传感器制造中的应用越来越感兴趣。使用 3D 打印技术为制造几何和功能复杂的传感器提供了一种新方法。这项工作介绍了对 3D 打印热塑性纳米复合材料在施加力下的压缩的分析。获得了相应电阻变化与施加负载的响应,以评估打印层作为压力/力传感器的有效性。聚乳酸 (PLA) 基质中的多壁碳纳米管 (MWNT) 和高结构炭黑 (Ketjenblack) (KB) 被挤出以开发可 3D 打印的细丝。研究了创建的 3D 打印层的电和压阻行为。MWNT 和 KB 3D 打印层的渗透阈值分别为 1 wt.% 和 4 wt.%。厚度为 1 mm 的 PLA/1 wt.% MWNT 3D 打印层表现出负压系数 (NPC),其特征是,当压缩载荷增加至 18 N 且最大应变高达约 16% 时,电阻会下降约一个数量级。在力速率为 1 N/min 的循环模式下,PLA/1 wt.% MWNT 3D 打印层表现出良好的性能,压阻系数或应变系数 (G) 为 7.6,压阻响应幅度 (A r) 约为 -0.8。KB 复合材料在循环模式下无法显示稳定的压阻响应。然而,在高力率压缩下,PLA/4 wt.% KB 3D 打印层导致大灵敏度的响应(Ar=-0.90)并且在第一个循环中不受噪声影响,具有 G = 47.6 的高值,这是一种高效的压阻行为。
通过不断改进电极材料和电解质的性能来提升超级电容器的性能。12在电极材料方面,常见的电极材料有(i)碳、(ii)金属氧化物和(iii)导电聚合物。13,14与金属氧化物和导电聚合物相比,碳材料具有比表面积大、中/微孔率高、无毒、化学稳定性高、导电性好,能加速电解质离子的扩散,15,16因此碳基材料的研究备受关注。常见的碳基材料包括生物质、碳纤维、炭黑、碳气凝胶、碳纳米管、石墨烯等。17对于碳纤维、石墨烯、碳气凝胶、碳纳米管等,由于其成本高、碳前驱体不可再生、合成工艺复杂,无法用于商业化。 18 – 20 而生物质基碳恰好可以弥补这些不足。生物质具有天然结构,具有天然多级孔隙,这使得生物质基碳的合成比其他碳材料更容易、更安全、更便宜、更绿色。此外,生物质资源丰富,可再生。21 – 23 基于以上事实,可以推断生物质是应用于超级电容器的电极材料的良好前驱体。24 目前,多种生物质已被用作超级电容器碳材料的前驱体,例如竹子、头发、小麦、甘蔗渣、橘皮、丝绸、猪骨等。11,21,25 虽然大多数生物质基碳具有良好的电化学性能,但它们仍存在区域分布有限、生产、收集和运输困难等缺点,这可能会限制其进一步的工业化。25 – 28