自动驾驶汽车(SDVS)的抽象开发人员与可能的未来有一个特定的想法。公众不得分享其基于的假设。在本文中,我们分析了英国调查(N¼4,860)和美国(n¼1,890)公众的自由文本响应,这些公众询问受访者在想到SDV时会想到什么弹簧,以及为什么应该或不应该开发它们。响应(平均每个参与者的总共27个单词)倾向于提出安全的希望,并且更常规地担心。许多受访者都提出了技术,其他道路使用者与未来之间关系的替代书籍。而不是接受一种主导的公众参与方法,该方法试图使公众从这些观点中教育,而是建议这些观点应视为社会情报的来源,并为建立更好的运输系统做出了潜在的建设性贡献。预期治理,如果要包容,则应寻求理解和整合公众观点,而不是拒绝它们是不合理的或可变的。
从 3D 显微镜图像重建数字神经元是研究大脑连接组学和神经元形态的重要技术。现有的重建框架使用基于卷积的分割网络在应用追踪算法之前将神经元从噪声背景中分割出来。追踪结果对原始图像质量和分割精度很敏感。在本文中,我们提出了一种新的 3D 神经元重建框架。我们的关键思想是利用点云的几何表示能力来更好地探索神经元的内在结构信息。我们提出的框架采用一个图卷积网络来预测神经骨架点,采用另一个图卷积网络来产生这些点的连通性。我们最终通过解释预测的点坐标、半径和连接来生成目标 SWC 文件。在 BigNeuron 项目的 Janelia-Fly 数据集上进行评估,我们表明我们的框架实现了具有竞争力的神经元重建性能。我们对点云的几何和拓扑学习可以进一步有益于 3D 医学图像分析,例如心脏表面重建。我们的代码可在 https://github.com/RunkaiZhao/PointNeuron 上找到。
LIDAR UPSMPLING对于机器人和自动驾驶汽车的启示系统来说是一项艰巨的任务,这是由于大型场景的稀疏结构稀疏和不规则的结构。最近的作品建议通过将LIDAR数据从3D欧几里得空间传播到2D图像空间中的一个超级分辨率问题来解决此问题。尽管他们的方法可以生成具有细粒细节的高分辨率范围图像,但由此产生的3D点云是10个模糊细节并预测无效的点。在此pa-per中,我们提出了郁金香,这是一种从低分辨率激光雷达输入中重建高分辨率激光圈云的新方法。我们还遵循一种基于图像的方法,但特定地修改了基于Swin-Transformer网络的贴片和窗口几何形状,以更好地拟合范围图像的特性。我们在三个公共现实世界和模拟数据集上进行了几项实验。郁金香在所有相关指标中都优于最先进的方法,并且比以前的工作生成了强大,更现实的点云。该代码可在https://github.com/ethz-asl/tulip.git上找到。
尽管最近的研究通过深度学习技术突破了极限,但从 3D 点云中进行物体检测仍然是一项具有挑战性的任务。由于严重的空间遮挡和点密度随到传感器距离的固有变化,同一物体在点云数据中的外观会有很大变化。因此,设计针对这种外观变化的鲁棒特征表示是 3D 物体检测方法的关键问题。在本文中,我们创新地提出了一种类似域自适应的方法来增强特征表示的鲁棒性。更具体地说,我们弥合了特征来自真实场景的感知域和特征从由富含详细信息的非遮挡点云组成的增强场景中提取的概念域之间的差距。这种领域自适应方法模仿了人脑在进行物体感知时的功能。大量实验表明,我们简单而有效的方法从根本上提高了 3D 点云物体检测的性能并取得了最先进的结果。
点云经常包含噪声和异常值,为下游应用带来障碍。在本文中,我们介绍了一种新颖的点云去噪方法。通过利用潜在空间,我们明确地发现噪声成分,从而可以提取干净的潜在代码。这反过来又有助于通过逆变换恢复干净点。我们网络中的一个关键组件是一个新的多层图卷积网络,用于捕获从局部到全局各个尺度的丰富几何结构特征。然后将这些特征集成到可逆神经网络中,该网络双射映射潜在空间,以指导噪声解缠结过程。此外,我们使用可逆单调算子来模拟变换过程,有效地增强了集成几何特征的表示。这种增强使我们的网络能够通过将噪声因素和潜在代码中的内在干净点投影到单独的通道上来精确区分它们。定性和定量评估均表明,我们的方法在各种噪声水平下都优于最先进的方法。源代码可在 https://github.com/yanbiao1/PD-LTS 获得。
方法和结果:虽然深层神经网络的新方法正在迅速发展[1],但足够且适当的训练数据(通常是带注释的点云)的瓶颈仍然是地球科学中许多应用的主要障碍。那些饥饿的学习方法取决于训练数据的适当域表示,这对天然表面和动态具有挑战性,在较高的阶层内变异性。通过VLS生成的合成激光元点云,例如,使用开源模拟器Helios ++ [3],可以解决一些解决方案,以克服缺乏给定任务的训练数据。在代表目标表面类的虚拟3D/4D场景中,可以模拟不同的激光雷达广告系列,所有生成的点云被自动注释。VLS软件(例如Helios ++)允许模拟给定场景的任何激光雷达平台和设置,该平台为数据增强提供了很高的潜力,并创建了针对特定应用程序的培训样品。在最近的实验[1]中,纯粹的合成训练数据可以实现类似的性能,以从现实世界中获得的昂贵标记的训练数据进行语义场景分类。
本文提出了一种基于深度学习的可容纳性评估方法,构成了街头规模的智能手机点云和城市规模的3D行人网络(3DPN)。3DPN已被研究和映射以进行轮廓和智能城市应用。然而,由于省略的行人路径,未发现的楼梯和过度简化的高架人行道,文献中3DPN的城市水平尺度对于评估轮椅的可及性(即车轮)不完整;如果映射量表处于为轮椅使用者设计的微观级别,则可以更好地表示这些功能。在本文中,我们使用智能手机点云加强了城市规模的3DPN,这是一种有希望的数据源,用于补充细微的细节和由于厘米级别的准确性,鲜艳的色彩,高密度和人群源性质而导致的细颗粒细节和温度变化。三步方法重建行人路径,楼梯和坡度细节,并丰富城市规模的3DPN进行轮廓评估。PEDESTRIAN路径的实验结果表现出准确的3DPN中心线位置(miou = 88。81%),楼梯检测(miou = 86。39%)和轮子性评估(MAE = 0。09)。本文贡献了一种适合,准确和人群采购的轮子评估方法,该方法将无处不在的智能手机和3DPN架起高密度和丘陵的城市区域的3DPN。
在此处给出了完整的确认部分:致谢:这项工作得到了中国国家自然科学基金会(No.62227801和No.UME20B2062,No.62376024)的支持,以及中国国家关键研究与发展计划(20222ZD0117900)。
摘要 - 在Point-Cloud获取环境中的常见挑战,例如实现安全性和自动驾驶,是确定传感器和工人的放置以及要支付给他们的奖励。游戏理论可作为一种非常强大的工具,用于确定部署的传感器和工人的适当奖励的问题,并且先前的一些研究提出了使用游戏理论来确定奖励的方法。但是,这些方法并未考虑AI对下游任务的识别准确性的影响,以开发这些适当的奖励。在本文中,我们通过考虑AI的识别准确性提出了游戏理论的新特征功能。为了定义我们的功能,我们研究了观点数量和点云的噪声水平如何影响分类精度。此外,我们分析了识别模型通过使用Shap重点关注的点云的哪一部分,这是一种基于Shapley值改善机器学习的方法。索引术语 - 点云,特征功能,莎普利值,shap,零拍点云识别模型
摘要由于典型的长尾数据分布问题,模拟无域间隙合成数据对于机器人技术,摄影测量和计算机视觉研究至关重要。基本挑战涉及可靠地衡量真实数据和所谓数据之间的差异。这样的措施对于安全至关重要的应用(例如自动驾驶)至关重要,在这种应用中,在此驾驶中可能会影响汽车的感知并造成致命事故。以前的工作通常是为了在一个场景上模拟数据并在不同的现实世界中分析性能,阻碍了来自网络缺陷,类别定义和对象代表的域差距的不相交分析。在本文中,我们提出了一种新的方法,用于测量现实世界传感器观测值和代表相同位置的模拟数据之间的域间隙,从而实现了全面的域间隙分析。为了测量这种域间隙,我们引入了一种新型的公制狗PCL和评估模拟点云的几何和语义质量的评估。我们的实验证实了引入的