摘要:由于各种 3D 空间数据应用对数据量和质量的要求很高,需要自动化、高效和可靠的数据采集和预处理方法。使用摄影测量技术以及光检测和测距 (LiDAR) 自动扫描仪是其中很有吸引力的解决方案。然而,测量数据是以无序点云的形式出现的,通常需要转换为基于多边形或多面体表面的高阶 3D 模型,这不是一个简单的过程。该研究提出了一种新开发的算法,用于校正来自机载 LiDAR 对规则 3D 建筑物的测量的 3D 点云数据。所提出的方法假设在应用规则的泊松曲面重建方法之前应用一系列导致 3D 光栅化的操作,即创建和处理对象的 3D 规则网格表示。为了验证重建对象的准确性和质量,以便与获得的 3D 模型进行定量比较,使用了高质量的地面真实模型,其形式是通过摄影测量构建的网格,并使用建筑物建筑平面图手动制作。所呈现的结果表明,应用所提出的算法对结果的质量有积极影响,并且可以与现有的表面重建方法结合使用,以便从 LiDAR 扫描生成更详细的 3D 模型。
摘要 - 心肌梗塞(MI)是最普遍的心血管疾病之一,相关的临床决策通常基于单值成像生物标志物。但是,这种指标仅近似于心脏的复杂3D结构和生理,因此阻碍了对MI结果的更好理解和预测。在这项工作中,我们以点云的形式研究了完整的3D心形状的实用性,以改善对MI事件的检测。为此,我们提出了一条由3D心脏表面重建步骤组成的全自动多步管道,然后是点云分类网络。我们的方法利用了点云上的几何深度学习的最新进展,可以在心脏解剖学的高分辨率表面模型上进行直接有效的多尺度学习。我们评估了1068个英国生物银行受试者的方法,以实现普遍的MI检测和事件MI预测的任务,并在临床基准测试中分别提高了约13%和约5%的改善。此外,我们分析了每个心室和心脏相对于基于3D形状的MI检测的作用,并对通常与MI结果相关的形态和生理模式进行了视觉分析。
摘要:地形机载 LiDAR 数据的使用已成为考古勘探的重要组成部分。然而,作为迈向理论意识、影响力和可重复研究的一步,需要一种更严格和透明的数据处理方法。为此,我们着手创建一个处理流程,用于考古学专用的点云处理和针对通用数据优化的产品的派生。所提出的流程改进了地面和建筑物点云分类。所提出的流程的主要创新领域是栅格网格插值。我们通过引入一种混合插值技术改进了最先进的技术,该技术将反距离加权与带有线性插值的三角不规则网络相结合。其中包括用于增强可视化的最先进的解决方案,还生成了必要的元数据和辅助数据。此外,我们还引入了一个 QGIS 插件,将流程实现为一步到位的过程。它将手动工作量减少了 75% 到 90%,并且除了对 QGIS 环境的一般熟悉之外不需要任何特殊技能。该流程和工具旨在为考古专用机载 LiDAR 数据处理的白盒化做出贡献。在讨论中,探讨了数据处理在知识生产过程中的作用。
前言 本论文总结了我来到斯特拉斯堡国立应用科学学院以来二十年的研究成果。它由两部分组成:第一部分概述了我在每个研究领域所取得的进展;第二部分总结了我过去和现在的教学、研究和行政活动。我的研究重点是通过点云对城市物体进行 3D 建模的特定主题。通过评估根据遗产地获取的数据开发的算法的质量,我们希望为公众相对较少了解的地形专业的推广做出贡献,同时突出建筑、城市和景观遗产我们的领土。论文的第一部分以某种方式强调了地形在从点云到 3D 模型的路径上的重要性。为这项工作做出贡献的众多研究结束项目证明,我们的研究与我们内部提供的培训自然相关,同时丰富了仪器和方法、激光测量、摄影测量、网络补偿、启动研究或甚至产生新的流程,例如最近启动的 BIM(建筑信息模型)流程。回忆录的第二部分见证了这一点。最后,我贡献的多学科主题让我有机会与来自不同专业的专家合作,除了地形学领域的专家,例如考古学、建筑学、地理学、气候学、法律、土木工程、传播学、力学、数学、计算机科学、历史,而且这个列表只会不断增长。围绕这些职业的多样性及其具体问题激发了我的求知欲,并自然地丰富了我的研究,但在所有这些经历中,我首先会记住他们将引起的宝贵的人类遭遇。
摘要 激光雷达测量和无人机摄影测量提供的高分辨率点云非常适合调查斜坡变形。然而,今天这些点云中包含的信息很少得到充分利用。这项研究展示了瑞士的三个大规模斜坡不稳定的例子,出于灾害预防的原因,这些斜坡受到积极监测。我们使用通过地面激光扫描获取的点云来 (1) 识别各个岩石隔室运动行为的差异;(2) 突出显示移动岩体中的活动剪切面;(3) 确定驱动斜坡位移的运动过程;(4) 根据岩石滑坡的 3D 表面运动模拟基底滑动面;(5) 计算精确的位移角;(6) 提供对不稳定岩石体积的估计。这些信息对过程理解做出了重要贡献,从而支持了灾害管理中的决策。
本综述的主题是机器人中的几何配准。配准算法将数据集关联到一个公共坐标系中。它们已广泛应用于物体重建、检查、医疗应用和移动机器人定位。我们专注于需要配准点云的移动机器人应用。虽然这些算法的基本原理很简单,但已经针对许多不同的应用提出了许多变体。在这篇综述中,我们从历史的角度介绍了配准问题,并表明可以根据一些元素来组织和区分大量的解决方案。因此,我们提出了几何配准的形式化,并将文献中提出的算法投射到该框架中。最后,我们回顾了该框架在移动机器人中的一些应用,这些应用涵盖了不同类型的平台、环境和任务。这些示例使我们能够研究每个用例的具体要求以及导致配准实施的必要配置选择。最终,本评论的目的是为几何配准配置的选择提供指导。
摘要:建筑行业需要用于各种应用程序,包括建筑物翻新,历史建筑保存和结构健康监测,需要全面,准确的信息。现实捕获技术促进了点云的形式记录本构建的信息。但是,在研究中,扫描计划和多技术融合的新兴发展趋势在研究中尚未充分解决有关它们对建筑环境中云云注册质量和数据质量的影响的研究。本研究旨在广泛研究扫描计划和多技术融合对点云注册和数据质量的影响。使用注册误差(RE)和扫描重叠率(SOR)评估了注册质量,分别代表注册准确性和注册率。相反,使用点误差(PE)和覆盖率(CR)评估数据质量,这表示数据的准确性和数据完整性。此外,本研究提出了一种体素质心方法和PCP速率来计算和优化CR,从而应对量化点云完整性的行业挑战。
由于嘈杂的中间量子量子(NISQ)时代已经存在,因此量子神经网络(QNN)绝对是对许多经典神经网络无法解决的许多问题的承诺解决方案。此外,量子卷积神经网络(QCNN)现在正在受到很多关注,因为它可以处理与QNN相比的高维输入。但是,由于量子计算的性质,很难扩大QCNN以提取由于贫瘠的高原而提取足够数量的特征。这在具有高维数据输入的分类操作中尤其具有挑战性。但是,由于量子计算的性质,很难扩大QCNN以提取由于贫瘠的高原而提取足够数量的特征。这尤其是具有高维数据输入的分类操作中的挑战。为此,提出了一种新颖的3D可伸缩QCNN(SQCNN-3D),以用于分类应用中的点云数据处理。此外,在SQCNN-3D顶部还考虑了反向保真度训练(RF-Train),用于使用量子计算的保真度有限的Qubits多样化特征。我们的数据密集型性能评估验证了所提出的算法是否达到了所需的性能。
本作品根据 Creative Commons Attribution 4.0 许可协议授权。有关更多信息,请参阅 https://creativecommons.org/licenses/by/4.0/
这项工作是由美国能源公司联盟(Alliance for of Contery No.DE-AC36-08GO28308。由美国能源部能源效率和可再生能源办公室提供的资金。这项工作得到了美国能源部科学办公室,教师和科学家劳动力发展办公室(WDTS)的部分支持,科学本科实验室实习计划(SULI)计划。这项工作得到了NREL实验室定向研发(LDRD)计划的部分支持。此处表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留和出版商,通过接受该文章的出版物,承认美国政府保留了不可限制的,有偿的,不可撤销的,全球范围内的许可,以出版或复制这项工作的已发表形式,或允许其他人这样做,以实现美国政府的目的。