摘要:机载合成孔径雷达(Airborne Synthetic Aperture Radar,Airborne SAR)利用机载定位定向系统(POS)获取的飞行器飞行参数以及飞行器与目标的相对位置信息,对重点目标及区域进行精确定位。飞行过程中,飞行器会因为大气湍流等原因偏离理想飞行路径,导致计算结果与实际目标位置出现偏差。为了提高目标定位精度,需要研究飞行器运动误差对目标定位误差的影响。本文从线性距离-多普勒算法(RDA)的角度探讨了单视机载SAR的定位精度,并在多视机载SAR定位模型的基础上,推导了多视机载SAR定位误差传递模型。在此基础上,详细分析了影响两种定位方法定位精度的主要因素,定量揭示了多视角机载SAR定位方法较单视角机载SAR定位方法提高目标定位精度的机理,解决了多视角机载SAR优化定位的航向规划问题。研究成果可为定位误差影响因素分析及机载SAR定位误差校正提供理论支撑。
o 技术灾难恢复计划:灾难恢复计划侧重于公司的计划和测试能力,以确保恢复公司的核心技术基础设施,包括网络、应用程序、市场数据馈送和其他共享技术,以确保关键业务系统处理和可用性的持续性。公司记录灾难恢复计划,以确保在中断后恢复关键应用程序及其数据。应用程序具有适当的 RTO 和恢复点目标(RPO:在发生意外数据丢失事件后可接受的最大数据丢失量,以时间为单位)来定义其恢复预期。灾难恢复计划详细说明了在定义的 RTO 和 RPO 内恢复数据和应用程序所需的程序。o 第三方供应商弹性计划:供应商弹性通过公司的第三方运营弹性保证 (TORA) 和供应商业务连续性规划 (VBCP) 计划进行评估。这些计划评估第三方供应商 BCP 计划的充分性和有效性以及它们在发生中断时恢复的能力。该公司还为关键供应商制定了退出和替代策略,详细说明了失去第三方服务的替代解决方案。
七个ICI已获得加拿大卫生部的各种癌症治疗的批准。1这些是抗CTLA-4(ipilimumab),抗PD-1(pembrolizumab,nivolumab,cemiplimab)和抗PD-L1(atezolizumab,aatezolizumab,avelumab,durvalumab)。1通过单一疗法或这些ICI的联合疗法的免疫反应重新激活可能导致发生几乎任何器官系统的IRAE。3,4胃肠道,内分泌和皮肤病学毒性是常见的副作用,而心脏毒性和肺毒性相对较少,但可能是致命的。4任何等级的IRAES的发生率根据免疫检查点目标而变化,PD-L1抑制剂的范围从66%到75%,CTLA-4抑制剂为87%。5各种器官的毒性可能从轻度到重度,并且根据不良事件的共同术语标准,版本5.0(CTCAE,V.5),欧洲医学肿瘤学会(ESMO)指南(ESMO)指南(ESMO)指南和美国临床肿瘤学学会(ASCO)指南(ASCO)指南,这些症状是不同步的症状(年级)(年级)(年级1)(年级)(年级1)(年级)(年级)(年级)(年级)(生命)(生涯)(生命)(生命)(生命)(均为年级)。 5年级是死亡。
在陆地机器人自主导航的背景下,创建用于代理动力学和感官的现实模型是机器人文献和商业应用中的广泛习惯,在该习惯中,它们用于基于模型的控制和/或用于本地化和映射。另一方面,较新的AI文献是在模拟器或Ai-thor的模拟器或端到端代理上进行训练的,在这种模拟器中,重点放在照相现实渲染和场景多样性上,但是高效率机器人动作具有较少的特权角色。所得的SIM2REAL差距显着影响训练有素的模型转移到真正的机器人平台。在这项工作中,我们探讨了在设置中对代理的端到端培训,从而最大程度地减少了Sim2real Gap,在感应和驱动中。我们的代理直接预测(离散的)速度命令,这些命令是通过真实机器人中的闭环控制维护的。在修改的栖息地模拟器中鉴定并模拟了真实机器人的行为(包括底盘的低级控制器)。探视和定位的噪声模型进一步促进了降低SIM2REAL间隙。我们在实际导航方案上评估,探索不同的本地化和点目标计算方法,并报告与先前的工作相比的性能和鲁棒性的显着增长。
测试和评估总体规划 (TEMP) 和 Block 3F 联合测试计划 (JTP) 中的累积测试内容,该计划在签署这些文件时完全同意这些内容是必需的。该计划计划“隔离”计划由测试中心飞行的 JTP 累积测试点,而是直接跳到最近设计的复杂毕业级任务效能风险降低测试点,以快速抽样完整的 Block 3F 性能。然后,如果任何 Block 3F 功能在复杂测试点期间似乎正常工作,该计划将删除适用于这些功能的底层累积测试点并将其指定为“不再需要”。但是,该计划必须确保替代数据适用,并在删除任何底层累积测试点之前提供足够的统计信心,证明测试点目标已经得到满足。虽然这种方法可以提供对 Block 3F 功能的快速抽样评估,但存在很大的风险。多个最新的飞行测试软件版本可能会阻止程序使用旧版本软件的数据来计算基线测试点删除,因为它可能不再代表 Block 3F。西部试验场的可用性有限且成本高昂,再加上在该靶场完成的测试任务的重飞率很高,使得程序难以有效地进行这种测试。最后,最复杂的能力
中小型企业(SME)越来越依赖云平台来支持关键业务运营,从而使有效的灾难恢复(DR)策略(DR)策略确保了业务连续性。本评论提出了一个针对中小型企业量身定制的强大灾难恢复框架,旨在在系统故障,网络攻击或自然灾害的情况下最大程度地减少停机时间和数据丢失。框架集成了高级云技术,以创建一种具有成本效益的可扩展解决方案,该解决方案与中小企业的资源约束相一致,同时提供企业级的弹性。灾难恢复框架的关键组件包括基于云的数据复制,自动备份解决方案和地理冗余存储,以确保数据连续可用且可恢复。此模型采用实时数据同步和增量备份来最大程度地减少恢复点目标(RPO),从而确保在意外中断期间不会丢失关键数据。此外,该框架利用自动故障转移机制实现较低的恢复时间目标(RTO),使企业可以在中断后快速恢复操作。云编排工具(例如AWS弹性灾难恢复或Azure站点恢复)用于自动化灾难恢复过程,减少手动干预并提高恢复速度。该框架还使用模拟工具来定期测试灾难恢复计划,以识别弱点并优化响应时间。对于中小型企业,成本效益和易于管理至关重要。该框架强调了云资源的付费模型,允许企业随着灾难恢复解决方案的发展而扩展其不产生过度前期成本的增长。通过提供持续的监视和主动威胁检测,该灾难恢复框架可确保中小企业可以在云平台上保持不间断的业务运营,从而增强弹性并减轻与数据损失和系统停机时间相关的财务和运营风险。
摘要:自发光遥感系统的应用,其中雷达图像正在迅速增长。合成孔径雷达(SAR)系统的独特性质使其成为地面变形监测、地震研究和许多摄影测量应用中最流行和适用的自发光遥感技术之一。有几种处理 SAR 数据的方法和算法,每种方法和算法都适用于不同的目的。本文开发了两种更常见和可靠的算法:距离多普勒算法和 Chirp Scaling 算法。用于处理 SAR 数据的软件包和工具箱(如 DORIS、ROI-PAC、RAT 和 PULSAR)各有优缺点。这些软件包中的大多数都在 Linux 平台上运行,难以使用,并且需要相当多的预处理数据准备。此外,没有通用的 SAR 处理应用程序可以处理所有数据类型或适用于所有目的。还有一些软件包(例如 ROI-PAC)对某些国家/地区的人们有限制。本论文的目标是使用两种更常见的算法处理 SAR 数据,对这两种算法的结果进行比较,并处理 InSAR 对图像以形成干涉图并创建 DEM。为此目的开发了一个基于 Matlab 的程序,该程序具有图形用户界面和一些可视化增强功能,有助于处理数据并产生所需的输出。然后,我研究了不同频域对结果图像的影响。我在论文中创建的程序有几个优点:它是开源的,并且非常容易修改。该程序是用 MATLAB 编码的,因此不需要大量的编程知识就可以对其进行自定义。您可以在任何可以运行 MATLAB 7+ 的平台上运行它。在这篇论文的最后,我得出结论,在 2D 频域中执行二次距离压缩的距离多普勒算法的结果与 Chirp Scaling 算法一样好,并且计算复杂度更低,耗时更少。无法引入通用的 SAR 处理算法。大多数情况下,算法需要针对特定数据集或特定应用程序进行调整。此外,最复杂的算法并不总是最好的算法。例如,对于点目标检测目的,距离和方位角方向的两个滤波步骤可以提供足够准确的结果。
计划在美国科罗拉多斯普林斯(今天,Ispace,Inc。 (ISPACE)揭幕了其下一代Lunar Lander,第2系列,该公司计划首次用于其第三次月球任务(Mission 3)以及随后的未来任务。站立约11.5英尺高,宽14英尺(大约高3.5 m x 4.2 m的宽度),包括其腿部,其尺寸和客户有效载荷设计能力都比Ispace的第一代Lander Model,Series 1,该公司正在为其第一和第二任务开发。针对2024年上半年的发射日期,系列2将是最大,功能最强大的兰德ISPACE开发的。该计划是在美国设计,制造和推出的。去年六月,着陆器已经成功通过了初步设计评论(PDR),这是车辆工程的关键开发阶段。向前迈进,它计划与通用原子电磁系统集团(GA-EMS)和Draper合作开发,并组成了一个具有数十年遗产和成功探索成功的团队。系列2旨在向月球轨道和月球表面提供有效载荷。Lander具有有效载荷设计能力,可将高达500kg II运送到月球表面。对于专门用于月球轨道的有效载荷的任务,可以替代容量以将多达2,000kg III运送到轨道。它具有模块化有效载荷设计,具有多个有效载荷湾,可为更广泛的政府,商业和科学客户提供灵活性和优化。值得注意的是,登陆器的目标是成为能够在月球之夜幸存下来的第一个商业月球着陆器之一,并旨在有能力降落在月球的近侧或远处,包括极地地区。此外,着陆器的指导,导航和控制(GNC)还包括能够确保下降过程中非凡准确性的精确着陆技术,包括表面相对速率和避免危险,从而实现高精度障碍物避免和确定着陆点目标。Draper提供了GNC技术,该技术将被公认为是进入,血统和着陆(EDL)功能的全球领导者,具有数十年的经验可以追溯到阿波罗计划。系列2旨在为各种任务提供高度可靠的解决方案,包括NASA商业月球有效载荷服务(CLPS)计划的潜在未来任务。其推进系统将使用5个压力供电的主发动机和12个反应控制推进器,旨在在每个任务中保持适当的方向,并具有发动机输出功能,以确保有效载荷交付,即使发生发动机损失,降低了风险并增加任务成功的可能性。ISPACE创始人兼首席执行官Takeshi Hakamada参加了在科罗拉多斯普林斯举行的第36空间空间研讨会上举行的揭幕。 ISPACE美国首席执行官Kyle Acierno;以及ISPACE US LANDER计划总监Kursten O'Neill,他领导了第二系列Lander的工程。在我们的Ispace US的第一位雇用库尔斯滕(Kursten)在SpaceX七年后加入了Ispace,在那里她管理了火箭制造商的猎鹰车队的新产品介绍。评论
遥感的单元I基本原理:遥感的定义:遥感原理,遥感历史。电磁辐射,辐射定律,EM光谱。EMR的相互作用:与大气,大气窗,成像光谱法,与地球相互作用。各种土地覆盖特征的光谱标志。单元-II平台:平台类型。卫星轨道,开普勒定律,卫星特征,地球观测研究的卫星和行星任务。 传感器:传感器的类型和分类,成像模式,光传感器的特征,传感器分辨率 - 光谱,辐射和时间,检测器的特征。 单元III数据接收,处理和图像解释。 地面站,数据生成,数据处理和更正。 错误和校正:辐射,几何和大气。 地面调查以支持遥感。 培训集,准确性评估,测试站点。 地面真相工具和光谱签名,频谱反射率和RS数据植被源的光谱特征:全球和印度数据产品。 视觉图像解释:视觉解释的视觉解释元素的基本原理,视觉解释的技术,解释键单元IV摄影测量法:航空摄影系统的基本原理:历史发展 - 分类 - 垂直照片的几何形状 - 规模 - 浮雕 - 浮雕流离失所 - 倾斜度和倾斜的照片和倾斜的照片,飞行计划。 导热率。 IR图像的特征。 教科书:1。卫星轨道,开普勒定律,卫星特征,地球观测研究的卫星和行星任务。传感器:传感器的类型和分类,成像模式,光传感器的特征,传感器分辨率 - 光谱,辐射和时间,检测器的特征。单元III数据接收,处理和图像解释。地面站,数据生成,数据处理和更正。错误和校正:辐射,几何和大气。地面调查以支持遥感。培训集,准确性评估,测试站点。地面真相工具和光谱签名,频谱反射率和RS数据植被源的光谱特征:全球和印度数据产品。视觉图像解释:视觉解释的视觉解释元素的基本原理,视觉解释的技术,解释键单元IV摄影测量法:航空摄影系统的基本原理:历史发展 - 分类 - 垂直照片的几何形状 - 规模 - 浮雕 - 浮雕流离失所 - 倾斜度和倾斜的照片和倾斜的照片,飞行计划。导热率。IR图像的特征。 教科书:1。IR图像的特征。教科书:1。立体镜:立体镜-Parallax方程 - 视差测量 - 高度的视差杆测量和斜率 - 立体绘图工具的测定。分析和数字摄影测量法:空中照片的方向间接,相对和绝对方向的概念,带状三角剖分,独立模型的阻滞调节(BAIM),特殊情况(切除,交叉点和立体声配件),空中式 - 空中三角形,三角构造,块调节,块调节,矫形器,矫形器,摩擦。单元V热成像:简介 - 动力学和辐射温度,材料的热性能,发射率,辐射温度。热容量,热惯性,明显的热惯性,热扩散性。IR - 辐射仪。天气对图像的影响。i)云,ii)表面风,iii)烟羽的穿透。热图像的解释。微波遥感和激光雷达:简介 - 电磁频谱,机载和空间传播雷达系统基础仪器。系统参数 - 波长,极化,分辨率,雷达几何形状。目标参数 - 背部散射,点目标,体积散射,穿透,反射,bragg共振,跨侧面变化。斑点,辐射校准。微波传感器和图像特征,微波图像解释。LIDAR简介。高光谱遥感。Floyd,F。Sabins,Jr:遥感原理和解释,Waveland Pr Inc,2020 2。Lillesand and Kiefer:遥感和图像解释,John Wiley,2015年。3。4。遥感卷的手册。i&ii,第2版,美国摄影测量学会。Mikhail,E.M.,Bethel,J.S.,McGlone,J.C。(2001)。 现代摄影测量简介。 印度:威利。Mikhail,E.M.,Bethel,J.S.,McGlone,J.C。(2001)。现代摄影测量简介。印度:威利。