德勤指的是Deloitte Toustomatsu Limited(“ DTTL”),成员农场及其附属实体(总的来说是“ Deloitte Network”)。 DTTL(或“ Deloitte Global”)和每个成员公司和关联公司都是合法独立和独立的实体,并且不对第三方施加或约束彼此的义务。 DTTL和DTTL成员公司和分支机构仅对自己的行为和不进行责任,对其他公司或分支机构的行动和遗漏彼此不承担任何责任。 DTTL不为客户提供服务。有关更多信息,请访问www.deloitte.com/jp/about。 Deloitte Asia Pacific Limited是DTTL的成员公司,是保证有限责任公司。 Members of Deloitte Asia Pacific Limited and their affiliates are legally independent and separate organizations, serving more than 100 cities in Asia Pacific, including Auckland, Bangkok, Beijing, Bengaluru, Hanoi, Hong Kong, Jakarta, Kuala Lumpur, Manila, Melbourne, Munbai, New Delhi, Osaka, Seoul, Shanghai, Singapore, Sydney,台北和东京。
挥发性腐蚀抑制剂 (VCI) 是为抑制湿气管道顶部腐蚀 (TLC) 而开发的,其注入方法可显著影响所需剂量,从而影响其效率。在本研究中,使用批量和连续注入方法比较了 VCI 的效率。使用 API 5l X65 碳钢级样品进行了一系列 TLC 测试,包括 5 天控制测试、7 天连续注入测试(每 3 天 200 ppm VCI)和 5 天批量注入测试(1000 ppm VCI)。使用重量损失法 (ASTM G1-03) 确定均匀腐蚀速率 (UCR)。使用无限聚焦显微镜 (IFM) 评估点蚀速率 (ASTM G1 46- 21),并使用扫描电子显微镜 (SEM) 分析表面形态特征。总体而言,由于 VCI 浓度剂量不足,两项测试都无法有效抑制腐蚀。然而,批量注入测试的效果优于连续注入测试(UCR:0.40 毫米/年 vs. 0.69 毫米/年;点蚀率:0.70 毫米/年 vs. 3.28 毫米/年),因为它只造成均匀腐蚀。连续注入测试中腐蚀样品的严重程度是由于 VCI 膜部分覆盖顶部试样表面,导致 VCI 局部破裂,从而导致高点蚀率。总之,在这种测试环境中,两种方法都需要更高浓度的 VCI 才能有效降低腐蚀率。
如今,微电子技术需要寻找新材料,包括用于创建结构的掩模。中间硬掩模策略是实现微电子制造中光刻和蚀刻之间良好平衡的关键问题之一。微电子和光伏技术中一个有趣的挑战是在 Si 衬底上创建间距垂直取向的硅阵列,用于多功能半导体器件。制造这种结构仍然是一个严重的技术问题,需要寻找新的方法和材料。在这项工作中,我们建议使用钪作为硅上的新硬掩模材料,因为它具有高抗等离子化学蚀刻性和低溅射系数。我们已经证明,对厚度为几纳米的钪层进行湿法蚀刻可用于在硅上获得分辨率高达 4 微米的图案结构,这对于湿法蚀刻方法来说是一个很好的结果。在选定的等离子蚀刻条件下,与其他金属掩模相比,钪是一种具有极佳抗性的硅掩模,蚀刻速率最低。因此,钪硬掩模可以为形成不同的微尺度地形图案开辟新的可能性。
alpes,ltm,Grenoble F-38054,法国 * erwine.pargon@cea.fr,Univ。Grenoble Alpes,CNRS,LTM,17 Rue des Mardyrs,38054 Cedex 09法国Grenoble,法国摘要摘要本研究提出了通过在上衣的室内饮用量的策略,该策略通过与上衣相结合的室友eTch fat Chip Chore to Chore Choh toper fore the toper the toper fore the notch facking Koh weats face face face the the gan支柱。的确,KOH溶液中的gan蚀刻是一个各向异性过程,这意味着它允许在宏观尺度上出现稳定的面,而原子过程(例如踩踏)驱动湿蚀刻的基本机制在微观尺度上驱动湿蚀刻的基本机制。我们的研究强调了形状(圆形或六角形,与M平板或A平板对齐)的关键作用,以及硬面膜在确定所得的结晶刻面形成及其相关的粗糙度方面的粗糙度。此外,它强调了等离子体图案后的GAN支柱剖面(重入,直,锥形)的重要性,因为它们会强烈影响随后的湿蚀刻机制。最终,该文章证明,可以通过在等离子蚀刻后在略微倾斜的GAN曲线上使用室温湿KOH(44 wt%)来实现平滑的M型面,并结合使用六边形M的Masks。
摘要:Singlet Pission(SF)已被探索为通过产生更多激子来改善光伏性能的可行途径。通过高度的鸡际耦合实现了有效的SF,从而有助于电子超级交换以产生三重态。然而,强烈耦合的发色团通常会形成准分子,可以用作SF中间体或低能陷阱位点。然而,随后的破坏性过程需要最佳的电子耦合,以促进最初准备的相关三重态对孤立的三重态生产。构象柔韧性和介电调节可以通过调节鸡际表的电子相互作用来提供调整SF机制和效率的方法。在密集堆叠的传统有机固体中,这种策略不能轻易采用。在这里,我们表明SF活性发色团的组装周围定义明确的溶液稳定金属 - 有机框架(MOF)可以是模块化SF工艺的绝佳平台。一系列三个新的MOF,由9,10-双(乙烯烯基)蒽衍生的支柱建立,显示了拓扑定义的堆积密度和炭疽核的构象柔韧性,以决定SF机制。各种稳态和瞬态光谱数据表明,最初制备的单线种群可以偏爱准分子介导的SF或直接SF(均通过虚拟电荷转移(CT)状态)。这些溶液稳定的框架提供了介电环境的可调性,以通过稳定CT状态来促进SF过程。鉴于MOF是各种光物理和光化学发展的理想平台,因此产生大量长寿三胞胎可以在各种光子能量转换方案中扩展其实用程序。
摘要:T 细胞是我们免疫系统中发起抗原特异性免疫反应的关键参与者,因此是免疫治疗的常见目标。在体内直接编程 T 细胞的效应功能已显示出在临床前和临床环境中过继细胞疗法(例如嵌合抗原受体 T 细胞、CAR T 细胞)的前景。然而,选择性调节与特定疾病环境相关的 T 细胞亚群,同时保持大多数 T 细胞不受影响仍然具有挑战性。选择性设计抗原特异性 T 细胞的能力对于提高抗原特异性 T 细胞杀死癌症或受感染细胞的效力以及消除 T 细胞介导的自身免疫性疾病中的自身反应性 T 细胞至关重要。我最近开发了抗原呈递纳米颗粒 (APN),使用肽主要组织相容性复合物 (pMHC) 分子和脂质纳米颗粒将 mRNA 递送到抗原特异性 T 细胞。 APN 在三种不同的 T 细胞受体转基因小鼠模型(P14、OT-1 和 Pmel)和人类流感感染的小鼠模型中实现了向抗原特异性 T 细胞的功能性 mRNA 递送。此外,APN 在体内用抗人 BCMA CAR 编程人类流感特异性 T 细胞,并在携带人类多发性骨髓瘤癌细胞的小鼠中实现了肿瘤消退。迄今为止,我的数据证明了抗原特异性 mRNA 在体内向 T 细胞亚群递送以及 APN 在免疫细胞治疗中的前景。
4天前 — (4)防卫大臣卫生监察长、防卫政策局局长、采购、技术与后勤局局长或陆上自卫队参谋长向防卫大臣通报“装备...2 检查项目名称、规格、数量、单位和检查地点。产品名称.规格.数量和单位。检查地点。J-1 ...