摘要:银屑病是一种慢性自身免疫性皮肤病,发病率高,且容易复发。虽然生物疗法可以达到 PASI 90/100 的病灶清除率,但难治性病灶仍然难以完全清除,尤其是小腿和肘部。为了探索新疗法对这些难治性病灶的疗效,我们对 4 名中度至重度斑块状银屑病患者进行了临床观察,观察了分段式二氧化碳 (CO2) 激光疗法联合苏金单抗的安全性和有效性。在接受至少 3 个月的苏金单抗 300 毫克维持治疗后,这些患者接受了分段式 CO 2 激光治疗,针对小腿的难治性病灶。每四周进行一次治疗,最长疗程为 16 周。在联合治疗方法后,所有 4 名患者难治性病灶的治疗均有所改善。然而,改善程度因人而异。腿部银屑病面积和严重程度指数 (Leg-PASI) 评分降低了 50% 至 88%,而腿部医生总体评估 (PGA) 评分降低了 50% 至 75%。并且没有观察到不良反应。关键词:点阵二氧化碳激光、难治部位、银屑病、苏金单抗、小腿
1 10 控制与门(1 至 2 个量子比特) 混合超导-半导体单重态-三重态量子比特的高保真两量子比特门 1 11 控制与门(1 至 2 个量子比特) 硅自旋量子比特中的组合 SWAP 门 1 12 控制与门(1 至 2 个量子比特) 用于半导体自旋量子比特的基于穿梭的完整量子门 1 13 控制与门(1 至 2 个量子比特) 基于测量的编码自旋量子比特状态操控方法 2 4 控制与门(1 至 2 个量子比特) 半导体自旋量子比特的系统高保真操作和传输 2 5 控制与门(1 至 2 个量子比特) 仅使用柱塞门对称控制交换耦合 2 6 控制与门(1 至 2 个量子比特) 量子系统中的非绝热几何门平面锗量子点器件 2 7 控制和门(1 至 2 个量子比特)基于门集层析成像的数值噪声模拟 2 8 控制和门(1 至 2 个量子比特)半导体量子点中自旋量子比特的多种双量子比特门集
摘要 - 内存计算(IMC)是机器学习(ML)数据密集型计算加速器的最有希望的候选者之一。用于尺寸降低和分类的关键ML算法是主要成分分析(PCA),它在很大程度上依赖于经典的von Neumann架构未优化的矩阵矢量乘法(MVM)。在这里,我们提供了基于IMC的新PCA算法的实验演示,该算法基于功率迭代和在4 kbit的电阻切换随机访问存储器(RRAM)中执行的放气。威斯康星州乳腺癌数据集的分类准确性达到95.43%,接近浮点的实施。我们的模拟表明,与商业图形处理单元(GPU)相比,能源效率有250倍,因此在现代数据密集型计算中支持IMC的能源有效ML。
参考文献1。Divincenzo,D。P.量子计算的物理实施。Fortschritte der Physik:物理进展48,771(2000)。2。Ladd,T。D.等。量子计算机。自然464,45(2010)。3。Ito,T。等。四个四倍量子点中的四个单旋rabi振荡。应用物理信函113,093102(2018)。4。Mills,A。R.等。将单个电荷穿过一维硅量子点。自然传播10,1063(2019)。5。Mortemousque,P.A。等。在二维量子点阵列中对单个电子旋转的相干控制。自然纳米技术(2020)。6。损失,D。,Divincenzo,D。P.用量子点进行量子计算。物理评论A 57,120(1998)。7。Veldhorst,M。等。具有容忍控制的可寻址量子点量子量子。自然纳米技术9,981(2014)。8。Veldhorst,M。等。硅中的两分逻辑门。自然526,410(2015)。9。Takeda,K。等。 天然硅量子点中的易耐故障可寻址自旋值。 科学进步2,E1600694(2016)。 10。 Watson,T。F.等。 硅中可编程的两分量子处理器。 自然555,633(2018)。 11。 Zajac,D。M.等。 电子旋转的共同驱动的CNOT门。Takeda,K。等。天然硅量子点中的易耐故障可寻址自旋值。科学进步2,E1600694(2016)。10。Watson,T。F.等。 硅中可编程的两分量子处理器。 自然555,633(2018)。 11。 Zajac,D。M.等。 电子旋转的共同驱动的CNOT门。Watson,T。F.等。硅中可编程的两分量子处理器。自然555,633(2018)。11。Zajac,D。M.等。电子旋转的共同驱动的CNOT门。科学359,439(2018)。12。Yoneda,J。等。 一个量子点旋转量子置量量子,一致性限制了电荷噪声,而忠诚度则高于99.9%。 自然纳米技术13,102(2018)。 13。 Takeda,K。等。 在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。 NPJ量子信息4,1(2018)。 14。 Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Yoneda,J。等。一个量子点旋转量子置量量子,一致性限制了电荷噪声,而忠诚度则高于99.9%。自然纳米技术13,102(2018)。13。Takeda,K。等。 在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。 NPJ量子信息4,1(2018)。 14。 Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Takeda,K。等。在诱导频移的存在下,对Si/Sige自旋量子置量置量的优化电控制。NPJ量子信息4,1(2018)。14。Huang,W。等。 硅在硅中的两倍大门的保真基准。 自然569,532(2019)。 15。 Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Huang,W。等。硅在硅中的两倍大门的保真基准。自然569,532(2019)。15。Zheng,G。等。 使用芯片谐振器在硅中快速基于门的自旋读出。 自然纳米技术14,742(2019)。 16。 Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Zheng,G。等。使用芯片谐振器在硅中快速基于门的自旋读出。自然纳米技术14,742(2019)。16。Volk,C。等。 通过高频累积门对Si/Sige量子点的快速电荷传感。 Nano Letters 19,5628(2019)。Volk,C。等。通过高频累积门对Si/Sige量子点的快速电荷传感。Nano Letters 19,5628(2019)。
量子点中限制的电子和空穴为量子涌现、模拟和计算定义了极好的构建块。硅和锗与标准半导体制造兼容,并且含有具有零核自旋的稳定同位素,因此可作为具有长量子相干性的自旋的极好宿主。在这里,我们展示了硅金属氧化物半导体 (SiMOS)、应变硅 (Si/SiGe) 和应变锗 (Ge/SiGe) 中的量子点阵列。我们使用多层技术进行制造以实现紧密限制的量子点并比较集成过程。虽然 SiMOS 可以从更大的温度预算中受益,而 Ge/SiGe 可以与金属形成欧姆接触,但定义量子点的重叠栅极结构可以基于几乎相同的集成。我们首次在 Ge/SiGe 中实现了每个平台的电荷感应,并展示了功能齐全的线性和二维阵列,其中所有量子点都可以耗尽到最后的电荷状态。在 Si/SiGe 中,我们使用 N + 1 方法调谐五重量子点,以同时达到每个量子点的少数电子状态。我们比较了电容串扰,发现 SiMOS 中的电容串扰最小,这与量子点阵列的调谐相关。我们将这些结果应用于量子技术,并将工业量子位、混合技术、自动调谐和二维量子位阵列确定为四个关键轨迹,当它们结合在一起时,可以实现容错量子计算。