1-7-2-4 温度循环:(MIL-STD-750C,方法 1051)确定设备在极端高温和低温下的耐受能力。条件:T H = 125 0 C / 150 0 C 30 分钟。T R = 25 0 C 15 分钟。T C = -55 0 C / -65 0 C 30 分钟。1-7-2-5 热冲击:(MIL-STD-750C,方法 1056)确定设备在突然极端温度变化下的耐受能力。条件:T H = 100 0 C / 125 0 C / 150 0 C 5 分钟。T C = 0 0 C / -40 0 C / -55 0 C / -65 0 C 5 分钟。1-7-2-6 正向寿命:(MIL-STD-750C,方法 1027)确定器件在额定正向电流下承受操作的能力。1-7-2-7 正向开关寿命测试:(MIL-STD-750C,方法 1036)通过实际模拟确定器件的电气应用。1-7-2-8 高温反向偏置:(MIL-STD-750C,方法 1026)确定器件在高温反向偏置下的特性。1-7-2-9 高温存储:(MIL-STD-750C,方法-1031)确定设备在高温条件下的电气和机械特性。
摘要这项研究的目的是根据紫外线辐射和温度的形式确定环境因素对聚合物复合材料(PrepRegs)振幅频率行为的影响,基于热敏环氧树脂用高强度R-Glass纤维增强的框架工作。准备了两种具有不同纤维排列的复合材料。该系列的纤维以30°,45°和60°的角度排列在与中心层相关的对称和不对称方向下。复合材料经过调节,在中欧和东欧温带温暖的过渡气候中,在春季和夏季模拟了六个月的使用。为此目的使用了由Q-Lab Corporation制造的UV Quv/Spray/RP加速老化室,使用UV-A 340灯来模拟日光。此外,使用热冲击室T/60/V2 Weisstechnik对突然温度变化引起的不同载荷进行了同样的变化。使用Tiravib 50101电磁激发仪与LMS Scadias III控制器和测试结合使用的条件样品。实验室软件。以谐振区域的幅度 - 频率图的形式表明,测试的结果表明,由于调节性,这是某些变化,这是材料测试领域的新发展。结果阐明了环境条件对复合材料刚度特性的影响,在谐振频率下运行时会导致动态非线性。
阀门设计和材料方面的最新进展已使渣油加氢裂化反应器 (RHR) 的运行得到显著改善。这些创新解决了热冲击、腐蚀和这些关键工艺中精确控制的需求等关键问题。例如,采用先进材料和制造技术(如陶瓷涂层和 3D 打印)的隔热套管已成为保护阀门免受快速温度波动影响的有效解决方案。这些设计最大限度地减少了通过传导、对流和辐射的热传递,大大延长了阀门的使用寿命并减少了维护要求。垫片技术也已发展以满足 RHR 环境的需求。高性能垫片(包括采用贵金属镀层的垫片)具有增强的耐腐蚀性、热稳定性和耐用性。这些进步确保了更好的密封性能并降低了泄漏风险,这对于加氢裂化操作的安全性和效率都至关重要。此外,可编程逻辑控制器 (PLC) 和高级控制面板等自动化系统的集成彻底改变了 RHR 中的阀门管理。这些系统可实现精确控制、高效清洗、最佳加热循环和增强的安全协议。强大的硬件和先进的软件相结合,可以实现实时监控和调整,最大限度地减少人为错误并最大限度地提高流程效率。
1001.4 气压(降低) 1011.1 浸没 1015.1 稳态初级光电流辐照程序(电子束) 1016 绝缘电阻 1017.1 中子辐照 1018.6 内部气体分析(IGA) 1019.6 稳态总剂量辐照程序 1020.5 静电放电敏感度(ESD)分类 1021.4 防潮性 1022.7 耐溶剂性 1026.5 稳态工作寿命 1027.3 稳态工作寿命(样品计划) 1031.5 高温寿命(非工作) 1032.2 高温(非工作)寿命(样品计划) 1033 反向电压泄漏稳定性 1036.3 间歇工作寿命 1037.3 间歇使用寿命(样本计划) 1038.5 老化(二极管、整流器和齐纳二极管) 1039.4 老化(晶体管) 1040 老化(晶闸管(可控整流器)) 1041.4 盐雾环境(腐蚀) 1042.4 功率 MOSFET 或绝缘栅双极晶体管(IGBT)的老化和寿命测试 1046.3 盐雾(腐蚀) 1048.1 阻塞寿命 1049 阻塞寿命(样本计划) 1051.9 温度循环(空气对空气) 1054.1 封装环境压力测试 1055.1 监控任务温度循环 1056.8 热冲击(液体对液体) 1057.1 抗玻璃破裂 1061.1 温度测量,外壳和螺柱 1066.1 露点 1071.16气密密封 1080.1 单粒子烧毁和单粒子栅极破裂 1081.1 介电耐压
碳 (sp3)-碳 (sp2) 材料有可能彻底改变储能和微电子等领域。然而,在柔性基底上合理设计和印刷碳-碳材料仍然是可穿戴电子技术中的挑战。这项研究展示了用于微型超级电容器的柔性激光诱导石墨烯 (LIG)-硼掺杂金刚石纳米壁 (BDNW) 混合纳米结构的可扩展制造。聚酰亚胺薄膜上的直接激光写入通过 BDNW 粉末的存在进行调节,其中 BDNW 在 CO2 激光波长下的明显吸光度会提高局部薄膜温度。激光照射引起的热冲击在金刚石晶粒边界处产生石墨化和无定形碳,从而增加了 LIG-金刚石界面之间的热和电荷传输能力。样品进一步用 O2 等离子体处理以调节润湿性或改善微型超级电容器装置性能。石墨烯的出色电特性、金刚石的卓越电化学稳定性以及含氧基团的必要贡献,使其具有显著的电荷存储容量(18 mF cm − 2 @ 10 mV s − 1 )和循环稳定性(10 000 次循环后保持 98%),优于大多数最先进的基于 LIG 的超级电容器。此外,尽管机械应力极大,这些微型超级电容器仍保持其出色的电化学性能,因此有望成为高功率、柔性/可穿戴电子产品。
使用形态学基因婴儿繁荣(BBM)和wuschel2(WUS2)以及新的三元构建体增加了基因型范围和可用于玉米转化的外植体的类型。进一步优化BBM / WUS2的表达模式已导致快速玉米转化方法,这些方法更快,适用于更广泛的近交范围。但是,BBM / WUS2的表达会损害再生植物的质量,从而导致不育。我们推论转化后的剪切形态基因,但在再生之前会增加肥沃的T0植物的产生。我们开发了一种使用诱导位点特异性重组酶(CRE)来消除形态学基因的方法。在早期胚胎发育中使用了受发展调控的启动子,例如OLE,GLB1,END2和LTP2,以驱动CRE的CRE切除,并以25-100%的速度产生切除的事件。利用切除激活的可选标记的一种不同的策略,以53 - 68%的速度产生了切除的事件;但是,转化频率较低(13-50%)。使用诱导热冲击启动子(例如hsp17.7,hsp26)表达CRE,以及组织培养条件和构造设计的改善,导致T0转化的高频(29-69%),切除(50 - 97%),可用的质量事件(4--15%)(4-15%),几乎没有Escapes(非TransgaInic; 14 - 17%; 14 - 17%; 14 - 17%;该方法产生的转基因事件不含形态学和标记基因。
在过去的二十年中,MEMS陀螺仪广泛用于消费电子产品,汽车安全性,机器人技术和稳定,这是由于其尺寸较小和功耗低[1,2]。随着性能的提高,它们也具有巨大的潜力,可以启用更高级的应用程序,例如空间应用。出于这个原因,MEMS陀螺仪有望在大型卫星中检测到故障检测,或者在微卫星,电信卫星和行星流浪者中进行态度传播和速率确定[3-5]。尽管如此,尽管其性能提高,但MEMS陀螺仪仍需要主要的技术适应性适合空间应用,尤其是相对于航空航天环境的高阻力特征。许多研究工作已专门用于MEMS可靠性的领域。通常,大多数特定空间的可靠性问题是热循环和热冲击,辐射,振动和机械冲击,在发射和阶段 /隔热罩分离时[6-9]。微卫星的寿命主要是一年。一方面,陀螺仪必须具有最佳的成本,尺寸,重量和功率(CSWAP)。另一方面,陀螺仪在卫星使用寿命期间应稳定起作用。由于其成本优势,大气包装的MEMS陀螺仪是最好的候选者之一。然而,空间环境的高真空是带有大气包装的MEMS陀螺仪无法忽略的因素。陀螺仪包装中的气压将在非常高的真空状态下的一段时间内下降。MEMS陀螺仪的偏置漂移与工作压力有关[10]。MEMS陀螺仪的另一个偏见漂移来源是它们对温度变化的固有敏感性[11]。因此,工程师应充分注意陀螺仪对热效环境的敏感性。
测试方法 方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.10 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.9 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.15 密封 1015.11 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序1021.3 数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装引起的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.2 芯片渗透测试(针对塑料设备) 机械测试 2001.4 恒定加速度 2002.5 机械冲击 2003.12 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.12 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键拉力试验) 2012.9 射线照相术 2013.1 DPA 内部目视检查 2014 内部视觉和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.11 内部视觉(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试
测试方法 方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.9 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.8 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.14 密封 1015.10 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序1021.3 数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装引起的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.1 芯片渗透测试(针对塑料设备) 机械测试 2001.3 恒定加速度 2002.5 机械冲击 2003.11 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.11 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键拉力试验) 2012.9 射线照相术 2013.1 DPA 内部目视检查 2014 内部目视和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.10 内部目视(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试
测试方法 方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.10 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.9 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.15 密封 1015.11 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序1021.3 数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装引起的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.2 芯片渗透测试(针对塑料设备) 机械测试 2001.4 恒定加速度 2002.5 机械冲击 2003.12 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.12 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键拉力试验) 2012.9 射线照相术 2013.1 DPA 内部目视检查 2014 内部目视和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.11 内部目视(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试