测试方法方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.10 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.9 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.15 密封 1015.11 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序 1021.3数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装诱发的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.2 芯片渗透测试(针对塑料设备) 机械测试 2001.4 恒定加速度 2002.5 机械冲击 2003.12 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.12 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键合拉力测试) 2012.9 射线照相 2013.1 DPA 内部目视检查 2014 内部目视和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.11 内部目视(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试
测试方法方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.10 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.9 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.15 密封 1015.11 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序 1021.3数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装诱发的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.2 芯片渗透测试(针对塑料设备) 机械测试 2001.4 恒定加速度 2002.5 机械冲击 2003.12 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.12 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键合拉力测试) 2012.9 射线照相 2013.1 DPA 内部目视检查 2014 内部目视和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.11 内部目视(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试
测试方法方法编号环境测试 1001 气压,降低(高海拔操作) 1002 浸没 1003 绝缘电阻 1004.7 防潮性 1005.10 稳态寿命 1006 间歇寿命 1007.1 约定寿命 1008.2 稳定烘烤 1009.8 盐雾环境(腐蚀) 1010.9 温度循环 1011.9 热冲击 1012.1 热特性 1013 露点 1014.15 密封 1015.11 老化测试 1016.2 寿命/可靠性特性测试 1017.3 中子辐照 1018.7 内部气体分析 1019.9 电离辐射(总剂量)测试程序 1020.1 剂量率诱发闩锁测试程序 1021.3数字微电路的剂量率翻转测试 1022 场效应晶体管 (Mosfet) 阈值电压 1023.3 线性微电路的剂量率响应 1030.2 封装前老化 1031 薄膜腐蚀测试 1032.1 封装诱发的软错误测试程序(由阿尔法粒子引起) 1033 耐久性测试 1034.2 芯片渗透测试(针对塑料设备) 机械测试 2001.4 恒定加速度 2002.5 机械冲击 2003.12 可焊性 2004.7 引线完整性 2005.2 振动疲劳 2006.1 振动噪声 2007.3 振动,变频 2008.1 视觉和机械 2009.12 外部视觉 2010.14 内部视觉(单片) 2011.9 键合强度(破坏性键合拉力测试) 2012.9 射线照相 2013.1 DPA 内部目视检查 2014 内部目视和机械 2015.14 耐溶剂性 2016 物理尺寸 2017.11 内部目视(混合) 2018.6 金属化扫描电子显微镜 (SEM) 检查 2019.9 芯片剪切强度 2020.9 粒子撞击噪音检测测试
摘要:本文提出了一种使用嵌入式集成传感器界面的实时热监测方法,该界面专用于工业集成系统应用。工业传感器接口是涉及模拟和混合信号的复杂系统,其中几个参数可以影响其性能。这些包括在敏感的综合电路附近存在热源,需要考虑各种传热现象。这需要实时热监测和管理。的确,瞬态温度梯度或温度差异变化的控制以及先进集成电路和系统早期设计阶段可能引起的热冲击和应力的预测至关重要。本文解决了微电子应用在几个领域的增长需求,这些领域的高功率密度和热梯度差异的差异是由于在同一芯片上实施不同系统(例如新生成5G电路)引起的。为了减轻不良热效应,使用应用于Freescale嵌入式传感器板的McUxPresso工具提出了实时预测算法,并通过将嵌入式传感器编程到FRDM-KL26Z板上,以实时监控和预测其温度预测。基于离散温度测量值,嵌入式系统用于预测嵌入式集成电路(IC)中的过热情况。在本文中,还提供了FPGA实施和比较测量值。这些结果证实了所提出算法的峰检测能力,该算法可令人满意地预测FRDM-KL26Z板中的热峰,并使用有限元元素热分析工具(用于系统分析的数值集成元件(NISA)工具),以评估可能是当地热力学压力的水平。这项工作为热应力和局部系统过热提供了解决方案,这是集成传感器界面设计人员在设计各种高性能技术或恶劣环境中的集成电路时的主要关注点。
汽车和NBRI在印度尼西亚印度尼西亚推出了最全面的电动电动电池测试实验室 - PT Carsurin TBK(Carsurin)和国家电池研究所(NBRI)宣布了在印度尼西亚最全面的电动汽车(EV)电池测试设施的开放式(J. INSONES IN IN IN IN IN IN IN IN IN IN IN印度尼西亚)在国际电池台上开放(IBS)2022222220222. IBS IN IN IN IN IN IN IN IN IN IN IN IN IN IN IN IN IN INITIAN起点(IBS)。由印度尼西亚海事事务和投资协调部长Luhut Binsar Panjaitan和印度尼西亚共和国总裁Jenderal Tni(Purn)Moeldoko博士开设。IBS 2024在电动汽车供应链的每个链接中解决了战略问题,并审议了本地和国际解决方案。Carsurin和NBRI在2024年2月宣布了一项战略联盟协议,这不仅标志着实现印度尼西亚成为EV电池生产的全球中心的愿景迈出的一步,还代表了私营部门与研究机构之间的合作模型,以促进创新和可持续性。双方之间的合作协议建立了一个运营框架,以开发和实施印度尼西亚最先进,最全面的电动汽车电池测试设施。这项倡议代表了印度尼西亚在EV部门为可持续移动和技术领导力所努力的重要里程碑,符合最高的安全性,绩效和环境合规性。“建立电动汽车电池测试设施是我们迈向印度尼西亚绿色,更可持续的未来的重要步骤。与NBRI的联合实验室设施是Carsurin对卓越,创新和对我们环境福利的奉献精神的代表,” PT Carsurin TBK的首席执行官Sheila Tiwan说。Carsurin和NBRI带入市场的全面测试服务将有助于实现减少碳排放和增强国家能源安全的使命,同时还将印度尼西亚定位为全球电动汽车环境中的关键参与者。电动汽车电池测试设施将在各种方案和条件下为电动汽车电池组提供完整的实验室测试服务,与相关的全球标准一致,UN136。这包括液滴测试,机械冲击,振动,过度充电保护,过度电荷保护,热冲击和热循环,温度过度保护,外部短路保护和防火性。EV电池测试的初始阶段将优先考虑与印度尼西亚快速加速的电动汽车市场一致的两轮车运输模式。
DNA质粒的转化可能对克隆和蛋白质表达有益。在DNA克隆的初始步骤涉及质粒和基因插入物的限制消化,然后连接到质粒上的插入片段后,在细胞复制质粒的复制之前,仍然存在单链DNA尼克斯,必须由宿主细胞的DNA修复机器修复。细菌菌株(例如常见克隆菌株DH5α)已开发具有特定于克隆应用的特征。3已生成其他细菌菌株,例如BL21菌株,以促进靶基因在纯,完整,转化的质粒上受控的蛋白质表达。4这些细胞应变修饰的例子包括淘汰非必需的蛋白酶以最大化靶基因的蛋白质表达。请记住,可以在转化中使用许多不同类型的细菌菌株,所有这些菌株对不同的应用都有不同的修改。由于转化技术利用了细菌接受基因组DNA的能力,因此已经建立了特定的方法来最大程度地提高基因转移效率。通常,这些技术涉及某种形式的刺激,这些刺激使细菌外膜在短时间内更可渗透,从而可以摄取DNA。当前使用的两种最常见的转化技术是电击细菌菌株的化学胜任细菌菌株的热冲击(电击)。这些细胞的热休克在细胞膜中打开孔,允许进入质粒DNA。在前者中,用氯化钙处理细胞,以使细胞膜更可渗透,并促进质粒DNA附着在细菌细胞膜上。5电穿孔在细菌细胞壁中产生孔,并通过溶液中细胞的电脉冲进入质粒DNA。6平均而言,相对于热震动的转化,电穿孔在质粒摄取中产生较高的效率,并且不需要对细胞的任何化学处理。但是,电穿孔更昂贵,因为它使用电氧化器和专门的比色皿将电荷传递给溶液中的电池。必须根据可用资源和实验的所需转换效率做出方法的选择。转化后,细胞必须在营养丰富培养基中短暂生长(通常使用SOC培养基)中从冲击中恢复过来,然后可以将细胞粘贴在包含适当抗生素的LB琼脂平板上,以选择成功接受的细胞
图 6-3a。用于验证 IRIG 时间码准确性的基于 PC 的测试设置。...................................... 6-12 图 7-1。单个 CAIS 总线配置。......................................................................... 7-2 图 7-2。分离 CAIS 总线配置。......................................................................... 7-2 图 7-3。配置检查流程图 (1/2)。............................................................. 7-4 图 7-4。配置检查流程图 (2 / 2)。......................................................... 7-5 图 B-1。热瞬态测试设备。............................................................................. B-2 图 B-2。底座。................................................................................................................ B-3 图 B-3。传感器固定装置支架。................................................................................ B-4 图 B-4。传感器固定装置(黄铜)。................................................................................ B-5 图 B-5。玻璃固定环。............................................................................................. B-6 图 B-6。传感器安装插头。............................................................................................. B-7 图 B-7。闪光灯滑块。............................................................................................. B-8 图 B-8。灯架(大)。......................................................................................... B-9 图 B-9。灯架(小)。.................................................................................... B-10 图 B-10。使用开槽旋转盘和相当于测量应用的热源对传感器进行瞬态热冲击测试的测试设置。.................... B-15 图 C-1。发射器 RF 包络。................................................................................. C-1 图 C-2。晶体探测器输出。.................................................................................... C-1 图 C-3。幅度调制。......................................................................................... C-2 图 D-1。测量值和计算值。...................................................................... D-2 图 E-1。GUI 控制窗口。......................................................................................... E-6 图 E-2。文件浏览器窗口。...................................................................................... E-6 图 E-3。对话框:载波跟踪滤波器。.................................................................... E-7 图 E-4。对话框:符号跟踪滤波器。.................................................................. E-8 图 E-5。外部/接收器/眼图。外部、离散时间散点图。................................................................ E-10 图 E-6。................................................................. E-10 图 E-7。循环同步进度。......................................................................... E-10 图 E-8。表格分析摘要。............................................................................. E-11 图 E-9。图形分析控制窗口。......................................................................... E-11 图 E-10。假锁定眼图。.................................................................................... E-13 图 E-11。假锁定星座。................................................................................. E-13 图 E-12。数据采集设备。................................................................................ E-16 图 F-1。分析仪结构。.............................................................................................. F-3 图 F-2。参考功率谱。......................................................................................... F-4 图 F-3。星座图。............................................................................................. F-5 图 F-4。检测滤波器。......................................................................................... F-6 图 F-5。发射机测试设备。.......................... F-13 图 F-7。................................................................................ F-6 图 F-6。参考信号的比特间隔载波相位轨迹。发射机性能摘要。................................................................ F-15 图 F-8。使用差分编码预测的检测性能。.......................... F-15 图 F-9。基带频谱。................................................................................ F-16 图 F-10。在发射机 RF 端口测量的 OQPSK 星座。................................. F-16 图 F-11。决策样本直方图。................................................................................ F-17 图 F-12。在发射机 RF 端口测量的 OQPSK 星座。................................. F-17 图 F-13。箱间隔相位轨迹。......................................................................... F-18 图 F-14。轨迹偏差频谱。.............................................................................. F-19
散热器通过调节其热输出来维持电子设备的最佳工作温度,从而起着至关重要的作用。有效的设计对于确保有效的散热量至关重要,从而延长了组件寿命和整体系统性能。随着表面积的增加,由于更多的接触点而引起的热量耗散速率也会增加。这意味着更大的表面积可以从散热器到周围的空气中更大的热传递,从而增强冷却。在紧凑的系统中,在包含结构的同时达到一个较大的表面积至关重要。鳍和销阵列,微通道散热器或折叠鳍结构等技术可以增强热量消散而不会增加尺寸。多孔材料,例如金属泡沫,为热传递提供了巨大的内部表面区域。选择散热器的材料时,导热率是关键参数。铜的高热电导率为390-400 w/m·K,使其非常适合高端应用。但是,其成本和密度可能构成挑战。铝的导热率相对较低,但更具成本效益和更轻。像石墨烯这样的新材料具有出色的热导率,并且可能在HSF设计方面具有希望。材料的选择取决于特定的应用要求,即考虑效率,成本,质量和坚固性等因素。有效的散热器设计取决于三种主要的传热机制:传导,对流和辐射。鳍片或销阵列可以增加表面积,而风扇或鼓风机可以提高流速。传导对于将热量从组件转移到外部环境至关重要,从而进一步耗散。总而言之,选择合适的材料和优化散热器设计对于有效的热管理至关重要。热性能优化涉及通过改善热量交换的热界面材料保持热源和散热器之间的良好接触。适当的热路径分布和避免间隙对于有效的热传导至关重要。对流在冷却中起着至关重要的作用,最大化表面积对于提高对流效率至关重要。辐射是散热器设计中的另一个重要机制,Stefan-Boltzmann定律描述了它。使用高发射率的涂料可以显着增强辐射传热。散热器的几何特性在优化热辐射方面也起着至关重要的作用。为了实现有效的热量散热,特征应尽可能多地暴露表面积。散热器的效率在很大程度上取决于其表面,对流传热取决于表面积。计算给定的散热速率的必要表面积涉及使用方程q = h×a×Δt。傅立叶传导定律描述了通过材料的传热:QCONDUCTION = -K×A×ΔT/L。要确定鳍有效性,请使用等式q = h×a×ΔT来计算单个鳍片的传热速率。通过优化热电阻,对流和辐射,可以设计有效的散热器,以有效地将热量从表面散开。制定散热器的过程涉及几个阶段,这些阶段需要特定的工程计算以最大程度地提高热效率。要定义其性能,需要考虑三个关键因素:瓦特,环境温度(TA)和最高连接温度(TJ)中的散热耗散需求(Q)。例如,如果电子组件耗散20 W的热量,则Q = 20 w。然后通过从连接温度中减去环境温度来计算所需的温度升高(ΔT)。散热器的热电阻必须达到所需的温度升高,rth =ΔT/q = 55/20 = 2.75°C/w。散热器选择的类型和材料取决于诸如热量,重量和成本等因素。铝的导热率约为205 W/m·K,因此由于其有效性和成本而适合使用。调整散热器的尺寸和形状,以满足所需的热电阻水平,其中包括鳍片类型,销型或两者。鳍间距计算为:鳍间距=散热器的高度/鳍数。选择散热器设计时,请确保满足热电阻计算。空气对流传热系数(H)通常为10 - 50 W/m²·k。有效的热电阻计算为:rth,总计= rth,散热器+rth,界面+rth,结。按照设计信息构建物理散热器,并通过使用温度计测量温度差异来评估。取决于结果,可以对设计进行一些修改,以达到必要的热电阻。在设计电子设备时,适当的热管理至关重要,因为错误可能会产生负面影响。一个常见的错误是低估了适当的散热所需的表面积,这可能导致温度状态增加,甚至会导致组件的热冲击。制造有效的铝热散热器对于冷却电子设备至关重要,并防止它们过热。散热器用于消散由晶体管,CPU和功率放大器等组件产生的热量。制作散热器的过程涉及多个步骤,包括选择合金,设计散热器以进行最佳性能,准备材料,完成表面以增强与组件的接触,创建鳍以增加表面积,并将所有部分组装在一起。铝是一种流行的选择,因为其出色的导热率和轻质性质。但是,并非所有铝合金都适合散热器。通常使用6061和6063,因为它们具有良好的导热率且具有成本效益。散热器的设计应考虑尺寸,形状和鳍排列等因素,以确保最佳性能。准备材料涉及使用锯或CNC机器将其切成所需的尺寸,并在此过程中佩戴安全齿轮。整理表面需要砂纸逐渐磨碎的砂纸,然后使用金属抛光化合物进行抛光。这会产生光滑的表面,从而促进与热生成分量更好的接触。创建鳍涉及使用CNC机器或类似工具将其均匀地切入铝材材料,从而大大增加了散热器的表面积并允许更好的散热。散热器的鳍的尺寸和形状均匀,以确保在整个散热过程中保持稳定的性能。