1 北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室,北京 100871,中国 2 北京金羽能源科技有限公司,北京 100095,中国 * 电子邮件:xychuan@pku.edu.cn a 作者对这项工作的贡献相同 收到日期:2020 年 3 月 3 日/接受日期:2020 年 4 月 26 日/发布日期:2020 年 6 月 10 日 水系锌离子电池(ZIB)因其优异的安全性、成本效益和环境友好性而被公认为大规模储能最有希望的候选材料之一。然而,由于合适正极材料的可用性有限,ZIB 的应用受到阻碍。在本工作中,通过模板辅助热分解制备了多孔管状 MoS 2,其中以(NH 4 ) 2 MoS 4 为前驱体,以天然埃洛石为模板。作为一种有前途的锌离子电池正极材料,所制备的 MoS 2 在 0.2 A g -1 时表现出良好的比容量 146.2 mAh g -1 ,并且具有优异的循环性能,800 次循环后容量保持率为 74.0%。此外,所提出的 MoS 2 即使在 1 A g -1 时也表现出良好的倍率性能。这项工作为锌离子电池提供了一种有前途的正极材料,并为其未来在可再生能源存储中的应用开辟了新的可能性。关键词:MoS 2;热分解;埃洛石模板;正极;水系锌离子电池。1. 引言
锂金属与水反应会产生氢气 (H 2 ) 以及氧化锂 (Li 2 O) 和氢氧化锂 (LiOH) 粉尘。亚硫酰氯在 140°C 以上热分解时会产生氯气 (Cl 2 )、二氧化硫 (SO 2 ) 和二氯化二硫 (S 2 Cl 2 )。亚硫酰氯在室温下与水反应会产生盐酸 (HCl) 和二氧化硫 (SO 2 )。四氯铝酸锂 (LiAlCl 4 ) 与水反应会产生盐酸 (HCl) 烟雾、氧化锂 (Li 2 O)、氢氧化锂 (LiOH) 和氢氧化铝 (Al(OH) 3 ) 粉尘。
10.6。危险分解产物 - 氢(H 2)以及氧化锂(Li 2 O)和氢氧化锂(LiOH)粉尘是在锂金属与水反应的情况下产生的。氯(Cl 2),二氧化硫(SO 2)和二硫化二氯化物(S 2 Cl 2)在140 thionyl氯的热分解中,在140 r-盐酸(HCl)和二氧化硫二氧化硫(SO 2)的情况下,在硫代酸(So 2)的情况下产生硫代酸(So 2)的含量(硫酸)酸(SO 2),含有硫代酸(SO 2)。如果在四氯化铝(Lialcl 4)与水反应的情况下,产生烟雾,氧化锂(Li 2 O),氢氧化锂(LiOH)和氢氧化铝(Al(OH)3)。
这项工作将是该应用说明的延伸,展示了另外两种可用于研究材料热稳定性的技术。由于 PCM 蜡具有良好的热能存储能力和良好的耐化学性等优异的性能,它们经常用于各种需要高热稳定性的高性能热系统中。热稳定性对于确定其加工和应用非常重要,因为它会影响产品的最终性能,例如上限温度和尺寸稳定性。在本研究中,调制 TGA(MTGA™)用于研究热分解动力学(包括活化能),不受任何模型的限制。此外,长时间使用准等温法 MDSC 来观察热容量的变化,以确定热稳定性。
可充电自由作为高级电源,在便携式电子设备和新型混合动力/电动汽车领域表现出了一定程度的功能。1,2此外,这些应用激发了具有更高能量,更快的充电/放电速率,更长的环状寿命和更好安全性可靠性的更高能量的开发。作为LIB中最关键的组件,优化当前的电极材料并用稳定的电化学性能利用新电极材料。3,4但是,所有这些目标都需要对电池材料的结构变化及其在电化学过程中的性能之间的关系,循环和衰老期间的降解机制,通过利用各种特性方法及其组合在升高温度下的热分解行为之间有深入的理解。5-8
3.4详细信息如下所示。如图3,在正常的LIB中,当环境温度升高到90°C时,有机液体电解质和负电极开始反应,电池温度升高到环境温度以上(启动自动热现象)。如果环境温度在该状态下继续升高,则将发生树脂分离器的崩溃,并将导致平面短路的正极和负电极的短路,并会产生热量。当温度进一步升高时,阴极材料会热分解和释放氧气,从而导致与蒸发电解质的剧烈燃烧反应,从而导致热失落。另一方面,即使全稳态的LIB实验了类似的测试,电池温度仍与环境温度保持相同,因为它不含有机液体电解质和分离器,并且显示出较高的热稳定性。
热塑性泡沫通常由两相(固相和气相)组成,其中固相是聚合物基质,气相是基质内相互连接或隔离的细胞状结构中滞留的空气。此外,泡沫还可以根据细胞大小、结构、刚度、支柱结构和所用的发泡剂进行分类,如图 1 所示。通常,在泡沫加工过程中,气体要么被吹入熔融的聚合物中(物理发泡),要么被吹入在不同加工条件下因化学反应或热分解而释放气体的化合物中(化学发泡)。然而,获取热塑性泡沫具有挑战性,因为它涉及有效利用各个科学领域的知识库,包括聚合物化学、物理学、工程——化学、机械和工艺以及设备设计和操作。
摘要:采用化学酰亚胺化法制备了具有刚性聚合物主链的氟化芳香族聚酰亚胺 (FAPI) 薄膜。聚酰亚胺薄膜表现出优异的力学性能,包括高达 8.4 GPa 的弹性模量和高达 326.7 MPa 的拉伸强度,以及突出的热稳定性,包括玻璃化转变温度 (T g ) 为 346.3–351.6 ◦ C 和空气中的热分解温度 (T d5 ) 为 544.1–612.3 ◦ C,以及在 500 nm 处>81.2% 的高无色透过率。此外,聚酰亚胺薄膜在 10–60 GHz 下表现出稳定的介电常数和低介电损耗,这归因于刚性聚合物主链的紧密堆积限制了电场中偶极子的偏转。还建立了分子动力学模拟来描述分子结构和介电损耗的关系。