考虑一个量子测量机器的一般显微镜模型,该模型包含量子探头与热水浴的耦合,我们分析了实现量子测量所需的能量资源,其中包括产生系统设备相关性,不可逆的tran tran- tran-统计混合物的确定性混合物,以及确定的静止 - 以及一个光明的复合。至关重要的是,我们没有诉诸其他量子措施来捕获objective测量结果的出现,而是利用热浴的特性,从而重新记录了测量的自由度,从而自然地实现了量子达尔文主义的范式。在实践中,该模型允许我们对序列过程进行Quantative的热力学分析。从第二定律的表达中,我们展示了最小的重新工作工作如何取决于所测量的系统的能量变化加上信息的理论数量 - 表征了测量的效果 - 效率和完整性。另外,我们表明可以执行热力学可使用的测量,从而达到最小的工作支出,并提供响应方案。最后,对于有限的时间测量协议,我们说明了有限的热电学过程中固有的熵产生的上升产生所引起的侵扰工作成本。这重点介绍了测量速度和工作成本的速度之间的出现,除了测量和工作成本的效率之间的权衡。我们将这些发现应用于测量驱动量子发动机的热力学平衡中的新见解。
我们通过在非微扰水平上引入量子非谐性来研究高压冰的结构和热力学性质。量子涨落使 VIII 相(具有不对称 H 键)和 X 相(具有对称 H 键)之间的相变临界压力从 0K 时的经典值 116 GPa 降低了 65 GPa。此外,量子效应使其在很宽的温度范围内(0K-300K)不受温度影响,这与通过振动光谱获得的实验估计值一致,与经典近似中发现的强烈温度依赖性形成鲜明对比。状态方程显示出与实验证据一致的转变指纹。此外,我们证明,在我们的方法中,VII 相中的质子无序对 X 相的发生影响可以忽略不计。最后,我们高精度地再现了由于氢到氘的取代而导致的 10 GPa 同位素偏移。
摘要 摘要 2020 Elsevier Ltd 世界人口不断增加,随之而来的化石燃料消耗也随之增加,因此有必要寻找新的能源;清洁、廉价和可再生的资源。氢气在各种方法中都被称为清洁和可再生燃料;因此,寻找清洁的氢气生产方式可以被视为应对气候变化和全球变暖的适当解决方案。在本研究中,提出了太阳能驱动的高温蒸汽电解器系统的概念设计,并使用实时模拟器内部代码对其性能进行了热力学研究。在两个不同的地点评估了入口参数对系统性能的影响,并在设计日计算了系统的实时性能。结果表明,所提出的系统能够分离进水中 98% 的现有氢气,并以 1.2 g/s 的速率生产纯氢,总能量和火用效率分别为 21.5% 和 22.5%。此外,据报道,主要的火用破坏器是太阳能集热器,其入口火用的能量损失为 36.4%。根据结果,推断出对热吸收最有效的参数是直接法向辐照度和入射角,而相对湿度没有主要影响。此外,设计的系统在设计日分别在斯特林和巴博尔·诺希尔瓦尼理工大学生产了 52.43 千克和 26.45 千克氢气。这些地点的年平均氢气产量分别估计为 4.98 吨和 3.93 吨。
氧合光合作用是地球上几乎所有生物量生产的原因,并且可能是建立富含多细胞寿命的复杂生物圈的先决条件。地球上的生命已经演变为在广泛的光线环境中进行光合作用,但具有一个常见的基本结构,该建筑的轻度捕获天线系统与光化学反应中心相连。使用轻度收获的广义热力学模型,再加上进化算法,我们预测了可能根据不同强度和光谱曲线而发展的光收集结构的类型。我们定性地重现了多种类型的氧光自养生体的天线系统的色素组成,线性吸收曲线和结构拓扑,并表明,在各种光明环境中,相同的物理原理在不同的物理原理中发展。最后,我们将模型应用于在类似地球的系外行星上存在的代表性光环境,预测氧气和无氧光合作用都可以在低质量恒星周围发展,尽管后者似乎在最酷的M-Dwarfs周围可以更好地工作。我们将其视为迈出基本生物学过程的一般进化模型的有趣第一步,并证明了假设生物学的本质超出地球具有意义。
胞嘧啶分子的结构优化通过12步实现,优化能量为-10749.84 eV。4.94 eV的HOMO-LUMO能隙表明化学稳定性。氧原子表现出最负的电势,氢原子表现出最正的电势。态密度显示能隙为4.92 eV,证实了等效轨道能级。计算的硬度(2.47 eV)和柔软度(0.41 eV -1 )表明稳定性和极化性。化学势为-3.97 eV,电负性为3.97 eV。亲电指数为3.19 eV,表明亲电行为强。Mulliken电荷分析确定H13具有最高的正电荷,N5具有最高的负电荷。振动分析表明CH振动在3100-3300cm -1 ,NH在3500-3700cm -1 ,C=O振动在1771.10cm -1 。热力学性质如热容量、内能、焓和熵随温度的升高而增大,而吉布斯自由能则降低。
以12个步骤实现了胞嘧啶分子的优化结构,其优化能为-10749.84 eV。4.94 eV的Homo-Lumo能隙表示化学稳定性。氧原子表现出最负电位,氢原子显示出最积极的电位。状态的密度揭示了4.92 eV的能隙,确认了等效轨道能级。计算出的硬度(2.47 eV)和柔软度(0.41 eV -1)表明稳定性和极化性。化学势为-3.97 eV,电负性为3.97 eV。3.19 eV的亲电指数表示强烈的亲电行为。Mulliken电荷分析鉴定H13具有最高的正电荷和最高负电荷的N5。振动分析显示,在3100-3300 cm -1,N-H处的C-H振动为3500-3700 cm -1,而C = O时为1771.10 cm -1。热力学特性,例如热容量,内部能量,焓和熵随温度的增加,而Gibbs自由能降低。
核物理和高能物理的一个关键目标是从粒子物理的标准模型出发,描述物质的非平衡动力学,例如在早期宇宙和粒子对撞机中。通过格点规范理论框架,经典计算方法在这一任务中取得了有限的成功。格点规范理论的量子模拟有望克服计算限制。由于局部约束(高斯定律),格点规范理论具有复杂的希尔伯特空间结构。这种结构使平衡和非平衡过程中与储层耦合的系统的热力学性质的定义变得复杂。我们展示了如何使用强耦合热力学来定义功和热等热力学量,强耦合热力学是最近在量子热力学领域蓬勃发展的框架。我们的定义适用于瞬时淬灭,即在量子模拟器中进行的简单非平衡过程。为了说明我们的框架,我们计算了在与 1 + 1 维物质耦合的 Z 2 格子规范理论中淬灭期间交换的功和热。作为淬灭参数的函数,热力学量证明了相变。对于一般的热状态,我们推导出量子多体系统的纠缠汉密尔顿量(可用量子信息处理工具测量)与平均力的汉密尔顿量(用于定义强耦合热力学量)之间的简单关系。
1。引言预计到2050年,世界人口将超过100亿,导致对清洁水的需求紧急升级并确保食品生产。鉴于水是人类生存的最高资源,因此工业废水排放到水体中的激增已扩大了全球水污染的重要性。在各个类别的废水中,尤其是针对染料污染的废水,这主要是由于印刷和染色工业过程的不断发展。工业领域的范围,包括纺织品,皮革,纸张,橡胶,印刷和塑料,使用了10,000多种不同的染料和颜料。这种工业化导致每年的全球合成近70万吨染料[1]。由于某些类型的固有特性,包括酸性,碱性,偶氮,重氮,蒽醌,基于分散的和金属复杂的变化,这种染料的越来越多引起了人们的关注[2,3]。这些染料中有许多染料,尤其是从苯甲胺和萘衍生的染料,表现出对人,动物和水生生物的风险构成风险的致癌和诱变属性。暴露于这些染料已与负面的健康影响有关,例如对肾脏,肝脏,脑,生殖系统和中枢神经系统的伤害以及皮肤刺激[1,4]。废水化合物的非法排放将这些挑战引起严重的环境污染。要解决染料污染的废水对人类健康和环境的有害影响,在将废水释放到
水污染是当今社会的关键挑战之一。染料是抗性降解的致癌污染物,从水中清除它们的吸附性需要一些吸附剂,具有较高的吸附效率。当前的研究重点是将硫糖染料的吸附去除到氧化石墨烯 - 羧甲基纤维素 - 丙烯酰胺(go/p(cmc-co-am))纳米复合材料通过自由基共聚过程合成的纳米复合材料。批处理吸附研究是为了苦苦理解染料浓度和温度对吸附效率的影响。浓度研究和温度的数据应用于不同的等温模型和热力学研究。结果表明,Freundlich等温模型最适合吸附数据(R²= 0.9219),突出了异质吸附。此外,高温会导致降低吸附能力,从而揭示了吸附过程的放热性质。热力学上,该过程本质上是自发的和放热的,在温度范围内熵的降低。总体而言,结果显示了GO/P(CMC-CO-AM)纳米复合材料对从水吸附的Azure C染料的有效性。
量子 Souriau 李群热力学:具有新见解和新结果的全面综述 1969 年,Jean-Marie Souriau 在几何力学框架内引入了“李群热力学”,为统计力学提供了一种新方法。F. Barbaresco 及其合作者已经证明了 Souriau 模型在信息几何和几何深度学习等各个领域的适用性。本文全面回顾了 Souriau 的辛模型向量子信息理论的扩展。在 F. Barbaresco 和 F. Guy-Balmaz 的工作基础上,他们强调了量子信息几何和李群热力学之间的强烈相似性,本综述探讨了李代数的酉表示的作用以及 Fisher 度量和 Bogoliubov-Kubo-Mori 度量之间的等价性。除了综述之外,本文还介绍了通过整合量子热力学的现代发展进一步扩展经典 Souriau 框架的新结果。具体来说,这项工作将“量子李群热力学”与共伴生轨道的几何学联系起来,利用基于凯勒结构的混合量子态几何框架。该框架包含辛形式、近复结构和黎曼度量,全面刻画了混合量子态的空间,为量子热力学的底层几何结构提供了更深入的见解。