应用 • 标准化可更换单元 • 航天器组装和重新配置 • 月球探索和开发 • 机器人末端执行器连接/断开 特点 • 雌雄同体设计 • 90 度对称 • 扁平轮廓 • 可对角接合 • 形状配合功能(支持定位和机械负载转移) • 高机械负载转移 • 设计安全可靠 • 防尘 • 可扩展 可用服务 定制机械、电源、信号和/或热传递性能。 欲了解更多信息,请访问:https://www.spaceapplications.com 或联系我们: Michel.Ilzkovitz@spaceapplications.com Pierre.Letier@spaceapplications.com 关于 SPACE APPLICATIONS SERVICES Space Applications Services NV/SA 是一家独立的比利时公司,成立于 1987 年,在美国休斯顿设有子公司。我们的目标是研究和开发创新系统、解决方案和产品,并为航空航天和安全市场及相关行业提供服务。我们的活动涵盖载人和无人航天器、发射/再入飞行器、控制中心、机器人和广泛的信息系统。
国际社会科学与企业家杂志(IJSSE)第3卷,第2期ISSN(在线):2790-7716,ISSN(印刷):2790-7724:2790-7724 4月至2023年6月
我们研究了一种基于高斯态的 Szilard 引擎,该系统由两个玻色子模式组成,位于一个噪声通道中。系统的初始状态为纠缠压缩热态,通过对两个模式之一进行测量来提取量子功。我们使用马尔可夫 Kossakowski-Lindblad 主方程来描述开放系统的时间演化,并使用基于二阶 Rényi 熵的量子功定义来模拟引擎。我们表明,可提取的量子功随着库的温度和模式之间的压缩、热光子的平均数量和模式的频率而增加。功也随着测量强度的增加而增加,在异差检测的情况下达到最大值。同样,随着噪声通道的压缩参数的增加,可提取的功也在减少,并且它随着压缩热库的相位而振荡。
中红外仪器 (MIRI) 由英国牵头的十个欧洲成员国与 NASA 喷气推进实验室合作设计、建造和测试。欧洲贡献由科学与技术设施委员会 (STFC) 的 Gillian Wright 博士牵头,光学相机和热保护的大部分设计由 STFC 科学家和工程师完成。整个 MIRI 仪器随后在 STFC 卢瑟福阿普尔顿实验室的热真空室和振动测试设施中进行测试,以确保其在发射后完好无损并在恶劣的太空环境中完美运行。
2024 年 1 月 19 日 作者:斯宾塞·托布勒中士 第 374 空运联队公共事务部 第 374 空运联队于 1 月 16 日在日本横田空军基地举行了午餐会,以纪念马丁·路德·金牧师的一生和遗产。午餐会上,第 374 空运联队的成员了解了金博士对民权运动的贡献以及他对自由、平等和包容的承诺。 1994年,美国国会颁布了《马丁·路德·金纪念日和服务法案》,将一月的第三个星期一定为马丁·路德·金纪念日。每年的这一天,国防部都会和全国人民一起反思自己的原则。午餐会以第 374 空运联队指挥官安德鲁·拉丹上校的开幕词拉开帷幕。 “今天,我们庆祝一位非暴力反歧视领袖的遗产。(马丁·路德·金)采取了正确的行动,使用了正确的工具。拥抱多样性和包容性对我们、空军和横田社区都很重要。”午餐会的参加者观看了一段关于马丁·路德·金博士生平的视频,并讨论了军队中多样性和包容性的重要性。最后,参与者分享了如何运用金牧师的运动宗旨来提高任务准备度和有效性的想法。 “举办这样的特别活动总是很重要的,因为它让我们认识到我们的同龄人中有许多不同的群体,”第 374 空运联队多样性、包容性和可及性 (DEIA) 部门负责人坎迪斯·特里格一等兵说。“这是一个聚集在一起并进一步了解美国英雄和我们军队的机会。”
结果和讨论微生物测试的完整和截短的140°C灭菌周期的微生物测试结果如表1所示。在每种情况下,在140°C的干热周期中的任何一个中,来自不锈钢载体的任何样品中均未发现生长,证明了全部消除。在不同日期,所有截短的运行均显示结果的一致性,增长为零。阴性对照没有显示生长(未显示结果),表明技术人员没有样品污染。阳性对照与测试样品相同,除了未放入孵化器中。由于所有灭菌周期都能够消除所有微生物,包括用于干热量灭菌的规定生物学指标孢子,因此恢复程序仅用于阳性对照。表2中为323 L模型提供的结果清楚地表明,恢复的所有正面对照至少为10 6 CFU/载体,因此成功满足了所有接受标准。表3中给出的232升模型中所示的结果表明,最重要的生物学指标(抗抗热孢子孢子芽孢杆菌)最少回收了10 6 CFU/载体。这些结果证明,140°C的灭菌程序至少达到6-7 log 10减少抗脂肪芽孢杆菌的抗热孢子,符合EUP和USP的干热量灭菌所需的灭菌标准。
非热血浆辅助甲烷热解已成为轻度条件下氢生产的一种有希望的方法,同时产生了有价值的碳材料。在此,我们开发了一个等离子化学动力学模型,以阐明与氢气解析涉及氢和固体碳(GA)反应器内的甲烷热解的潜在反应机制。开发了一个零维(0D)化学动力学模型,以模拟基于GA的甲烷热解过程中的血浆化学,并结合了涉及电子,激发物种,离子和重物的反应。该模型准确地预测了与实验数据一致的甲烷转化和产品选择性。观察到氢与甲烷转化率之间存在很强的相关性,主要是由反应CH 4 + H→CH 3 + H 2驱动,对氢的形成贡献44.2%,而甲烷耗竭的37.7%。电子与碳氢化合物的影响碰撞起着次要作用,占H 2形成的31.1%。这项工作提供了对GA辅助甲烷热解中固体碳形成机制的详细研究。大多数固体碳源于通过反应E + C 2 H 2→E + C 2 + H 2 /2H的电子撞击C 2 H 2的分离以及随后的C 2缩合。c 2自由基被突出显示为固体碳形成的主要因素,占总碳产量的95.0%,这可能是由于C 2 H 2中相对较低的C - H解离能。这项动力学研究提供了对H 2背后的机制和在GA辅助甲烷热解过程中的固体形成机制的全面理解。