氧化铁纳米颗粒是非常有用的材料,因为它们具有珍贵和潜在的应用,丰度,较低的加工成本,稳定性,环境友好的功能和生物相容性[1]。近年来,α-FE 2 O 3已广泛应用于催化剂,气体传感器,色素,光学和电磁,药物递送等,因为它们的增强特性归因于其各种结构[2]。氧化铁纳米颗粒已经通过各种方法合成,但是开发易于环保和环保的合成方法至关重要[3]。赤铁矿(α-FE 2 O 3)的带隙为1.9-2.2 eV,可以充当非常好的半导体催化剂[4]。在合成过程中,材料的带隙的变化可能有助于进一步改善其生物医学应用和光学特性[5]。纳米化材料的最新发展显示出多种用途,例如可充电电池,超级电容器,磁性材料,照片催化降解和电极材料[6]。铁的氧化物以三种常见形式出现,即赤铁矿,磁铁矿和磁铁矿,其中赤铁矿(α-fe 2 O 3)是
这项研究采用简单的热液(HT)方法来合成五氧化钒(V 2 O 5)纳米材料。V 2 O 5的固有局限性,包括低量子效率和光敏度不足,限制了其增强光催化活性的潜力。该研究研究了通过退火通过退火研究甲基橙(MO)和刚果红(CR)染料的光降解。X射线衍射(XRD)和拉曼光谱学证实了V 2 O 5的组成,而SEM用于观察封装的纳米颗粒的形态。使用紫外线(UV)光谱法估计V 2 O 5的带隙在2.51和2.73 eV之间。此外,分析了亚甲基蓝(MB)染料的光降解,钙化的V2O5在90分钟内实现了MB的76%降解效率。对于CR和MO,在20 mg/L染料浓度下,降解率在200分钟内达到97.91%和86%。MB降解的反应速率常数确定为8.19 x10⁻⁵s⁻。总体而言,HT合成的V 2 O 5由于其可见光吸光度提高而表现出增强的光催化活性,从而促进了偶氮染料的更有效的光降解。
https://doi.org/10.26434/chemrxiv-2024-05st6 orcid:https://orcid.org/0000-0000-0002-8479-9328 Chemrxiv不同行评论的内容。许可证:CC BY-NC-ND 4.0
二氧化钛(TIO 2)最近引起了极大的关注,这主要是由于骨科和纳米材料科学的交集。这种感兴趣的激增可以归因于良好的理解,即Ti金属在暴露于大气条件时会经历表面氧化,最终导致外部面上强大的天然Tio 2层的形成。诸如阳极氧化等技术进一步增强了这一过程,从而导致了在生物学上兼容和成骨的钝化表面涂层的发展。纳米材料化学的进步在该结构域中至关重要,从而使TIO 2结构的受控组装(包括纳米纤维和纳米管)具有受控组装。此外,已经确定了特定的合成方法,可以产生具有分层结构的钛酸簇,这有利于磷灰石形成 - 天然骨组织的无机复合物。也值得注意的是,二氧化钛具有反应并转化为钛纳米管或纳米线的能力。这种特征已被证明是有益的,因为它已被证明可以促进与体液的离子交往相互作用,从而支持骨组织生长。具体来说,当将钛材料放入模拟的体液中时,离子交换开始并鼓励羟基磷灰石的产生,羟基磷灰石是天然骨的基本成分。纳米材料化学丰富了这一研究领域,许多实验室已经研究了结构控制TIO 2的形态,例如纳米纤维和纳米管[11,12]。这种产生的离子层结构作为阳离子储层起着至关重要的作用。已经确定了合成方法中的进步来产生钛酸盐材料,这些材料由它们的粘土状晶格(由边缘共享TIO TIO 6八面体组成)与阳离子实体散布在一起[13]。这种分层结构特别有利于模拟体液(SBF)中的磷灰石形成。更具体地说,涉及粉状TIO 2矿物质的热液反应,例如假酶和氧化钠或氢氧化钾溶液,会根据反应条件而产生Na-或K- titanate纳米管或纳米线。它有助于体液中发现的阳离子的离子交换,因此自主维持阳离子平衡原位,这对于骨组织生长至关重要。在SBF环境中,Na/k- titanate和钙(Ca 2+)之间的浓度梯度促使具有Ca 2+的单价Na +或K +离子的离子交换。这为随后的相互作用设定了阶段:磷酸盐阴离子的协调{即(PO 3)3-,(HPO 3)2-和(H 2 PO 3) - 从体液与泰坦酸盐结合的Ca 2+的体液中的(H 2 PO 3) - }。这种相互作用的顶点是形成水合磷酸钙或羟基磷灰石的形成,羟基磷灰石是天然骨的必不可少的基础[13]。
根据Holmberg等人最近的研究,重型车辆的发动机、变速箱、轮胎、辅助设备和制动器的摩擦消耗33%的燃料能量[1],汽车中的摩擦消耗28%的燃料能量[2],整个造纸厂摩擦消耗的能量占15-25%[3]。因此,人们进行了多次尝试,引入各种方法来克服摩擦。润滑被公认为减少摩擦和磨损最有效的方法之一[4]。润滑油添加剂对润滑性能有重要的影响。这些添加剂是活性成分,可以在混合过程中添加到基础油中,以增强基础油的现有性能或赋予基础油所缺乏的新特性[5-6]。在现代工业中,对机械寿命和效率的不断增长的需求刺激了对性能更好的润滑油添加剂的研究。在过去的几十年中,过渡金属二硫属化物MX 2 (M=Mo、W、Ti、V、Nb和Ta,X=S、Se) 因其独特的结构和优越的性能而引起了人们的极大关注。众所周知,过渡金属二硫属化物具有由XMX层堆叠而成的夹层结构。各层之间仅靠范德华力松散地结合,易于分裂,
采用一步水热法制备碳化钛/还原氧化石墨烯 (Ti 3 C 2 T z /rGO) 凝胶。该凝胶具有高度多孔结构,表面积为 ~224 m 2 /g,平均孔径为 ~3.6 nm。反应前体中 GO 和 Ti 3 C 2 T z 纳米片的含量不同,可产生不同的微观结构。Ti 3 C 2 T z /rGO 凝胶的超级电容器性能随成分而发生显著变化。比电容最初随 Ti 3 C 2 T z 含量的增加而增加,但在高 Ti 3 C 2 T z 含量下无法形成凝胶。此外,电容保持率随 Ti 3 C 2 T z 含量的增加而降低。与纯 rGO 和 Ti 3 C 2 T z 相比,Ti 3 C 2 T z /rGO 凝胶电极表现出增强的超级电容器性能,具有高电位窗口 (1.5 V) 和大比电容 (920 F/g)。 rGO 的 EDLC 与 Ti 3 C 2 T z 的氧化还原电容的协同效应是超级电容器性能增强的原因。用 Ti 3 C 2 T z /rGO 构建了一个对称双电极超级电容器单元,其面积电容非常高(158 mF/cm 2 ),能量密度大(~31.5 μW h/cm 2
摘要:本文报道了通过简便的水热法成功合成钴钌硫化物。使用 X 射线衍射、X 射线光电子能谱和拉曼光谱对所制备的钴钌硫化物的结构进行了表征。所有制备的材料均呈现纳米晶体形态。通过循环伏安法 (CV)、恒电流充放电 (GCD) 和电化学阻抗谱技术研究了三元金属硫化物的电化学性能。值得注意的是,优化后的三元金属硫化物电极表现出良好的比电容,在 5 mV s -1 时为 95 F g -1,在 1 A g -1 时为 75 F g -1,优异的倍率性能(在 5 A g -1 时为 48 F g -1)和优异的循环稳定性(1000 次循环后电容保持率为 81%)。此外,该电极在功率密度为 600 和 3001.5 W kg -1 时的能量密度分别为 10.5 和 6.7 Wh kg -1。这些诱人的特性使所提出的电极在高性能储能装置中具有巨大的潜力。
水热加工对合成晚期纳米材料以及具有量身定制特性的复合材料引起了极大的兴趣。该技术已用于为包括电子和光电设备,催化,生物医学,生物素器等的广泛应用生产纳米结构材料。“水热”一词起源于地质学,英国地质学家罗德里克·默奇森爵士(Roderick Murchison)是第一个使用它的人。他将地壳和随后形成的岩石以及矿物质的变化归因于在非常高的温度和压力下水的热液作用。顺便说一句,最大的自然存在的单晶(绿晶晶体,超过1kg),以及最大的人造单晶(几公斤的石英晶体),都是通过热液过程[1-2]来源的。