摘要 含水层热能存储 (ATES) 是一种节能技术,通过在含水层中存储热水和冷水来为建筑物提供供暖和制冷。在对 ATES 需求量大的地区,ATES 的采用导致了含水层的拥堵问题。通过减少相同温度的井之间的距离,可以增加含水层中存储的热能回收量,同时保证单个系统的性能。虽然这种方法在实践中得到了实施,但对其如何影响回收效率和所需的泵送能量的理解仍然缺乏。在本研究中,量化了井位对单个系统性能的影响,并制定了规划和设计指南。结果表明,当将相同温度的井的热区组合在一起时,单个系统的热回收效率会提高,这是因为发生损失的热区表面积减少。发现存储量小且井筛长的系统热回收效率提高幅度最大。对于储存量为 250,000 立方米 / 年的中等规模系统,热采效率相对增加 12%,对于小型系统(50,000 立方米 / 年),热采效率相对增加 25%。根据热采效率增加与泵送能量增加之间的权衡,同温井之间的最佳距离为热半径的 0.5 倍。相反温度的井之间的距离必须大于热半径的三倍,以避免产生负面相互作用。
本文讨论了在恶劣环境下废热回收 (WHR) 的工业潜力——恶劣环境下废热回收的定义是废热流的温度至少为 650°C 或含有使热回收复杂化的反应性成分。分析涵盖五个行业(钢铁、铝、玻璃、水泥和石灰),选择这些行业是基于生产量、含有恶劣环境成分的废气排放量、回收比目前回收量多得多的热量的可能性以及目前缺乏可接受的 WHR 选项。这些行业在恶劣环境下产生的废热流中发现的总潜在能源节约相当于美国制造业损失的工艺热能的 15.4%(113.6 TWh)。评估了这些行业现有的技术和材料,并估算了每个工业部门可从恶劣环境气体中回收的废热。最后,对每个废热源的深入总结显示了废热可以在何处回收以及必须解决哪些具体问题。潜力最大的是钢铁高炉(46 TWh/年)。考虑的其他废热流包括钢电弧炉(14.1 TWh/年)、平板玻璃(3.6 TWh/年)、容器玻璃(5.7 TWh/年)、玻璃纤维(1.1 TWh/年)、特种玻璃(2.2 TWh/年)、铝熔炉(4.7 TWh/年)、水泥(17.1 TWh/年)和石灰(10.5 TWh/年)。尽管在恶劣环境中回收废热的尝试大多未获成功,但研究和技术的进步可能会释放出巨大的能源和成本节约潜力。
SustainPower 是一家独特的电力设备包装商,在天然气发电行业开展业务,专注于利用沼气、垃圾填埋气和天然气进行分散式可持续发电的高质量解决方案。发电机组和热电联产厂 (CHP) 均在南非设计和制造,采用世界一流的发动机和部件。除了通过断电保护、调峰和废热回收为客户节省资金外,SustainPower 还通过高效的方式取代柴油和煤炭来减少碳排放。
3 能源服务公司(ESCO)是指提供多种技术服务和商品的法人实体,旨在开发和设计能源效率项目,实现和保证节能,并确保成本效益和最佳性能。其服务包括能源供应和管理、能源融资、技术工程专业知识和咨询、设备供应、安装、运行、维护和升级,以及性能和节约的监控和验证。其商品包括照明、电机、驱动器、供暖、通风、空调系统、建筑围护结构改进以及废热回收、冷却、加热或其他可用形式的能源控制系统(共和国法案 11285)。
自 1995 年以来,高通一直维护和运营其“P”热电联产厂。“P”热电联产厂为占地超过 200 万平方英尺的园区提供支持,其中包括高通公司总部、演讲厅、自助餐厅、医疗中心、工程和研究办公室、实验室、数据中心、网络运营中心、卫星通信枢纽、原型制造和三个停车场。1995 年,高通安装了 2.4 兆瓦 (MW) 燃气轮机热电联产系统,由三台 800 千瓦 (kW) Solar Turbine Saturn 发电机组成。800 kW 涡轮机使用天然气,但如果天然气供应中断,可以切换到使用喷气燃料。涡轮机产生的废热被送往热回收装置,产生热水,用于为吸收式制冷机供电。基于对原有燃气轮机系统的积极体验,高通公司在 2005 年启动园区扩建时增加了对热电联产的依赖。作为扩建的一部分,高通公司增加了一台 4.5 MW Solar Mercury 50 燃气轮机和一台 Broad 1,400 吨吸收式制冷机,后者由涡轮机废气直接驱动,以帮助满足不断增长的场地电力和冷却需求。“P”园区热电联产厂每年可节省 500,000 美元的运营成本。通过为设施提供热水的热回收装置,每年还可节省 100,000 美元。现场发电每年还可减少超过 1400 万千瓦时 (kWh) 的公用电力需求,从而节省 122,000 美元。热电联产系统每年可节省高达 775,000 美元。
自 1995 年以来,高通一直维护和运营其“P”热电联产厂。“P”热电联产厂支持超过 200 万平方英尺的园区,其中包括高通公司总部、演讲厅、自助餐厅、医疗中心、工程和研究办公室、实验室、数据中心、网络运营中心、卫星通信枢纽、原型制造和三个停车场。1995 年,高通安装了 2.4 兆瓦 (MW) 燃气轮机热电联产系统,由三台 800 千瓦 (kW) Solar Turbine Saturn 发电机组成。800 kW 涡轮机使用天然气运行,但如果天然气供应中断,可以切换到使用喷气燃料运行。涡轮机产生的废热被送到热回收装置,产生热水,用于为吸收式冷水机组供电。基于对原燃气轮机系统的积极体验,高通在 2005 年启动园区扩建时增加了对热电联产的依赖。作为扩建的一部分,高通增加了一台 4.5 MW Solar Mercury 50 燃气轮机和一台 Broad 1,400 吨吸收式制冷机,后者由涡轮机废气直接驱动,以帮助满足不断增长的场地电力和冷却需求。“P”园区热电联产厂每年可节省 500,000 美元的运营成本。通过为设施提供热水的热回收装置,每年可额外节省 100,000 美元。现场发电还可每年减少 1400 多万千瓦时 (kWh) 的公用电力需求,从而节省另外 122,000 美元。CHP 系统每年节省的总成本高达 775,000 美元。
图 1 Nikolski 发电 2 图 2 Nikolski 于 2007 年安装了一台 65 千瓦的翻新 Vestas V-15 3 图 3 热回收系统示意图 4 图 4 St George 发电 5 图 5 Kongiganak 发电 8 图 6 Kongiganak 的社区风电项目 9 图 7 Kotzebue 发电 10 图 8 Kotzebue 的风能和太阳能项目 10 图 9 Igiugig 的发电 11 图 10 Igiugig 的(左)柴油发电厂和(右)电池储能系统 11 图 11 Shungnak 发电 13 图 12 Shungnak 的太阳能光伏项目、水处理厂和水箱 13
“水热法制备新材料”是《材料》杂志的一期全新开放特刊,旨在发表原创研究和评论论文,介绍水热合成新材料研究的最新进展。本特刊还希望启发不同的视角,使水热技术(如材料的连续生产、水热回收技术以及水热合成的建模和模拟)更加经济。水热法仍然是一种“黑箱”技术,基于通过控制热力学(温度、压力、溶液的pH值和前体的化学成分)和非热力学变量直接从水溶液中结晶材料。基于热液独特的压力-温度相互作用,通过控制成核和生长的速率和均匀性,可以精确设计所得材料的尺寸、形貌、化学计量、多态性、亚稳态和聚集控制。此外,通过对热液体系的热力学建模,对水介质的溶液热力学以及对相平衡和结晶机理的预测,决定了制备新材料的能力。热液研究由地质学家在十九世纪中叶推广,主要集中在自然热液现象的实验室模拟。当代先进科学技术的不断发展,导致热液技术的多样性和复杂性不断提高,涵盖了多个跨学科的科学分支,而不仅限于晶体生长[1]。因此,水热法可以被视为重要技术的一部分,例如纳米技术和先进材料技术,它们都是一门高度跨学科的学科,也是物理学家、化学家、陶瓷学家、材料科学家和工程师所使用的一项技术。本期特刊的研究重点是“利用水热法制备新材料”,包括但不限于以下主题:水热合成、亚稳相、超临界水热生长、连续流水热合成、水热合成的建模和模拟、水热碳化和水热回收技术。
能源信用额(电力和化石燃料原型)——能源之星电器 ...................................................... 80 能源信用额(化石燃料原型)——高性能制冷 ...................................................................... 80 能源信用额(天然气原型)——高性能天然气炉 ...................................................................... 80 能源信用额(化石燃料原型)——空调空间内 100% 的管道 ............................................................. 80 REPI-028 开窗 U 系数 ............................................................................................................. 81 REPI-033 天花板隔热 R 值 ............................................................................................................. 81 REPI-063 规定空气泄漏(4.0 ACH50,气候区 0 – 2) ............................................................. 81 REPI-064 规定空气泄漏(2.5 ACH50,气候区 6 – 8) ............................................................. 81 REPI-089 R-7 管道绝缘 ................................................................................................................ 82 REPI-093 热回收通风 (HRV) ................................................................................................ 82 RED1-110 室外照明功率限额 ................................................................................................ 82
PassivHaus 于 20 世纪 90 年代在德国开发,它采用了更出色的隔热性能、三层玻璃和隔热框架,气密性比标准建筑高出约 20 倍,采用带热回收系统的机械通风,并且没有或只有极少的热桥。这些措施旨在打造能耗远低于现行标准的建筑,尤其是住宅,这意味着需要从国家电网获取的能源更少,并且整个建筑生命周期的总体碳消耗量可以降低。由于过去几年能源费用上涨,以及新建筑法规与 PassivHaus 标准更加一致,因此这也是一个有吸引力的前景。