图1.Wheatley 使用的热声系统剖面图 10 图 2.带有支撑结构的三板热声耦合示意图,其中一个热电耦合在 C 和 H 处安装有连接点,用于感应耦合器之间的温差。(Wheatley 等人,1983 年) ......................................................................................... 12 图3.Garrett (1991 年) 使用的四分之一波长热声制冷机示意图。虚线表示管内的压力分布 ...................................................................................... 15 图4.用于分析的带有板和间距厚度的坐标系的扩展视图 ...................................................................................... 29 图5.该图显示了平均温度下能量通量 H(瓦特)和波长 X(m) 随频率 f(Hz)的变化 ............................................................................................. 41 图6.该图显示了图中给出的参数下声功率 W(瓦特)随频率 f(Hz)的变化。5 ........................................... 42 图7.该图显示了图5 ......................................................................................... 43 图8.该图显示了图5 ....... 44 图9.5 ....... 45 图10.11.12.该图显示了在图 5 中给出的参数下声功率 W(瓦特)随压力幅度 PI(帕斯卡)的变化。该图显示了 COP 随压力幅度的变化。在图 5 中给出的参数下 Pi(帕斯卡)。5 ......................................................... 46 图该图显示了在图 5 中给出的参数下速度 u i 随压力 Pi(帕斯卡)的变化。5 ........................................................... 47 图该图显示了在图 5 中给出的参数下能量通量 H(瓦特)随管半径 R(米)的变化。 ................................ 48 图13.该图显示了在图 5 中给出的参数下声功 W(瓦特)随管半径 R(米)的变化。5 ................................................ 49
[1] 赵学历 , 金尚忠 , 王乐 , 等 . 基于结构函数的 LED 热特 性测试方法 [J]. 光电工程 , 2011, 38(9): 115-118. [2] 张立 , 汪新刚 , 崔福利 . 使用 T3Ster 对宇航电子元器件 内部热特性的测量 [J]. 空间电子技术 , 2011(2): 59-64. [3] MEY G, VERMEERSCH B, BANASZCYK J, et al. Thermal Impedances of Thin Plates[J]. International Journal of Heat and Mass Transfer, 2007, 50: 4457-4460. [4] VASILIS C, PANAGIOTIS C, IONNANIS P, et al. Dy- namic Thermal Analysis of Underground Medium Power Cables Using Thermal Impedance, Time Constant Distri- bution and Structure Function[J]. Applied Thermal Engi- neering, 2013, 60: 256-260. [5] MARCIN J, JEDRZEJ B, BJORN V, et al. Generation of Reduced Dynamic Thermal Models of Electronic Systems from Time Constant Spectra of Transient Temperature Responses[J] Microelectronics Reliability, 2011, 51: 1351-1355. [6] MARCIN J, ZOLTAN S, ANDRZEJ N. Impact of
本文介绍了一种新型航天器低温冷却器,它利用惰性气体中的共振高振幅声波来泵送热量。热声循环的相位由热传导提供。这种“自然”相位使整个制冷机仅靠一个移动部件(扬声器振膜)即可运行。1992 年 1 月,发现号航天飞机 (STS-42) 搭载了一台太空级热声制冷机。它完全自主,没有滑动密封,不需要润滑,主要使用公差较低的机加工零件,并且不包含任何昂贵的组件。事实证明,热声制冷机是食品冷藏/冷冻机和商用/住宅空调的有力候选者。本文介绍了太空热声制冷机 (STAR) 的设计和性能。
● 增加表面粗糙度 ● 使用非晶态材料作为声子路径上的悬浮结构。 ● 在表面涂覆低转变温度超导膜(图)或普通金属作为声子海绵(PRB 96, 220501(R) (2017))。
图 2:金刚石在双层 (a) 和多层 (b) 薄膜厚度方向上的热导率,从薄膜底部向上 (从薄到厚,虚线),从顶部向下 (从厚到薄,实线)。模型使用散射受限建模 (粗蓝线和虚线,无方向差异) 和受限声子群体模型 (红线和虚线) 展示。自上而下,两种建模方法匹配。然而,自下而上,受限声子模型导致厚膜热导率有限,因为入射声子群体中缺乏长波声子。这导致热导率的显著差异和较大的热整流效应。为了阐明双层和多层配置,插图中提供了带有箭头指示热流方向的卡通图。
设备,采用非平衡分子动力学方法来研究工作温度,界面大小,缺陷密度和缺陷类型对氮化碳/石墨烯/钻石异种结构的界面导热率的影响。此外,计算各种条件下的声子状态密度和声子参与率,以分析界面热传导机制。结果表明,界面热电导随温度升高而增加,突出了异质性固有的自我调节热量耗散能力。随着温度从100升的增加,单层石墨烯结构的界面热电导增加了2.1倍。这归因于随着温度升高的重叠因子的增加,从而增强了界面之间的声子耦合,从而导致界面导热率增加。此外,在研究中发现,增加氮化岩和石墨烯的层数会导致界面热电导量减少。当氮化壳层的数量从10增加到26时,界面的导热率降低了75%。随着层数增加而减小的重叠因子归因于接口之间的声子振动的匹配减少,从而导致较低的热传递效率。同样,当石墨烯层的数量从1增加到5时,界面热电导率降低了74%。石墨烯层的增加导致低频声子减少,从而降低了界面的导热率。此外,多层石墨烯可增强声子定位,加剧了界面导热的降低。发现引入四种类型的空缺缺陷会影响界面的导电电导。钻石碳原子缺陷导致其界面导热率增加,而镀凝剂,氮和石墨烯碳原子的缺陷导致其界面导热降低。随着缺陷浓度从0增加到10%,由于缺陷散射,钻石碳原子缺陷增加了界面热电导率,增加了40%,这增加了低频声子模式的数量,并扩大了界面热传递的通道,从而提高了界面热电导率。石墨烯中的缺陷加强了石墨烯声子定位的程度,因此导致界面导热率降低。胆汁和氮缺陷都加强了氮化炮的声子定位,阻碍了声子传输通道。此外,与氮缺陷相比,甘露缺陷会引起更严重的声子定位,因此导致界面的界面热电导率较低。这项研究提供了制造高度可靠的氮化炮设备以及广泛使用氮化壳异质结构的参考。
零能源建设电力 - 热热双层能量优化控制方法Kong Lingguo 1,Wang Shibo 1,Cai Guowei 1,Liu Chuang 1,Guo Xiaoqiang 2
3 现行国防部激励合同是指在企业通过自身努力降低成本时,对企业提供降低成本的奖励,为了实现采购价格提案,允许向企业提供最高达成本降低金额50%的奖励费用的合同制度。 4 附有超额利润返还条款的合同,是指合同开始时确定合同金额,如果合同另一方获得超额利润,则必须将超额利润返还给政府的一种固定合同。在五国之间签订合同的情况下,由于《金融法》的限制,国家债务的最长期限为五年。
由于非热微/纳米级声子群,热传输超过体积热传导 Vazrik Chiloyan a , Samuel Huberman a , Alexei A. Maznev b , Keith A. Nelson b , Gang Chen a * 1 a 麻省理工学院机械工程系,美国马萨诸塞州剑桥 02139 b 麻省理工学院化学系,美国马萨诸塞州剑桥 02139 虽然经典的尺寸效应通常会导致有效热导率降低,但我们在此报告