普通波特兰水泥(OPC) - 由于其出色的TES能力,良好的机械性能和低成本,因此已广泛用于热量储能(TES)应用。在这项尝试中,这项工作提出了一种升级程序,以对两种由OPC和杂化水泥制成的水合糊的特性进行建模(即一种替代的H污染物粘合剂),后者用于基于Geopolymer的复合材料(GEO)。首先,采用基于能量最小化和分子动力学的原子方法来建模CSH(硅酸盐水合钙)和NASH(铝硅硅酸盐水合物)阶段的热行为和热储存能力,这是基于OPC的Paste和Geo的主要阶段。然后,提出了提出的上缩放优化程序和中尺度的FEM均质化技术,以将基于OPC的糊和GEO的原子主要阶段的TES参数与均质的Meso/Macro量表值联系起来。为此,在OPC和GEO糊剂上的实验程序的结果都被视为校准/验证数值工具的基准。在几个尺度上进行的有希望的模拟和上刻度程序的模拟在均质化的温度依赖性热容量和热扩散率方面证明了与分析混合物的实验数据良好的一致性。2023 Elsevier Ltd.保留所有权利。
氯化物盐具有在高达 800 C 的极高温度下使用的巨大潜力(例如 MgNaK//Cl 混合物),但也可用作低熔点 HTF,例如共晶 ZnNaK//Cl(T m = 200 C)的情况。[12] 由于具有足够的热容量,氯化物盐是熔融盐催化转化过程中最有前途的 HTF。 尽管如此,其化学性质也带来了技术挑战。 在热能存储领域,由于氯化物盐在高温下对金属合金的腐蚀性质,人们对其进行了深入研究。 人们普遍认为,腐蚀机理受许多参数的影响,主要是温度、盐纯度以及主要基于氧和/或水分的杂质的存在(例如,参见 Ding 关于熔融氯化盐腐蚀的综述 [12])。在未来的热能存储中发挥重要作用的MgCl 2基熔盐中,主要的腐蚀性杂质已被鉴定为羟基氯化物(MgOHCl),并且假定它是水合MgCl 2水解的产物。 [12,13]可以使用不同的方法显着降低杂质水平,例如电解盐净化[14]或添加牺牲剂,例如元素Mg,[15]与杂质反应形成惰性MgO。以类似的方式,添加固体氧化物(例如ZnO和CaO)可显着减少
使用固体颗粒作为传热液(HTF)具有克服商业浓缩太阳能(CSP)植物中缺点的巨大潜力。固体颗粒热量储存(TES)系统允许从材料的角度从高温和低成本中实现高热性能。高温下基于CSP固体颗粒系统的转化效率在很大程度上取决于用作HTF和存储培养基的材料的光学特性和热物理性能。本研究旨在提供更多的实验数据和证据,证明使用颗粒固体进行CSP应用。在750ºC和900ºC下不同的老化时间后,研究了碳化硅(SIC),硅砂(SiO 2)和赤铁矿(Fe 2 O 3)的硅(Sio 2)和赤铁矿(Fe 2 O 3)的比热容量。太阳能吸收率在衰老过程中略有增加,除了二氧化硅砂,在最初的100小时内降低了其吸收性,达到了高原。在老化治疗后,SIC和二氧化硅砂的比热容量增加。但是,对于氧化铁,衰老后的特异性热容量较低。黑色硅碳化物SIC被证明是最高900ºC的最佳选择,因为它显示出最高的太阳能吸收率(96%)和最高的热量存储能力。关键字:太阳吸收;浓缩太阳能(CSP);固体颗粒,热能
在背面金属化之前,晶圆会被减薄,因为基板是设备的功能部分。300 毫米/12 英寸晶圆要么减薄到约 200 微米厚,要么遵循所谓的 Taiko 晶圆研磨原理。在后一种情况下,硅晶圆由一个外部 Taiko 环和减薄的硅膜组成。对于 300 毫米/12 英寸晶圆,该膜会根据设备电压等级减薄到 60、90 或 120 微米。薄基板的热容量低,因此需要严格控制工艺温度。沉积过程中的温度对固有薄膜应力有显著影响。为了最大限度地减少晶圆弯曲,必须最大限度地减少金属层堆栈引入的应力。CLUSTERLINE® 采用特殊的卡盘设计,可控制晶圆温度而不会损坏正面。在标准应用中,使用凹陷卡盘配置。在这种经典设计中,晶圆在沉积过程中位于外环上,从而防止与设备表面接触。然而,尽管凹陷式卡盘是一种经济高效的解决方案,但由于缺乏主动卡盘,热耦合受到限制。因此,对于需要更严格温度控制的应用,独特的 BSM-ESC(用于背面金属化的静电卡盘)是首选。
(1) 根据 CAFD 对 2023-2026 年期间的估计,计算为截至 2022 年 12 月 31 日的加权平均剩余年限,包括 2023 年 3 月 1 日之前已达到 COD 的资产。 (2) 代表年末拥有或合并的资产的总装机容量,无论我们在每项资产中的所有权百分比是多少,但 Vento II 除外,我们已将 49% 的权益计入其中。 (3) 包括自 2021 年 6 月收购 Vento II 以来的 49% 产量。包括我们获得补偿的风电资产削减 (4) 包括 43 MW,相当于我们在蒙特雷的 30% 份额,以及 55 MWt,相当于卡尔加里区域供热的热容量。 (5) 生产的 GWh 包括蒙特雷生产的 30% 份额。 (6) 可用性是指资产全部或部分可供客户使用的时间除以合同或预算可用性(如适用)。 (7) 调整后的 EBITDA 之前不包括按权益法核算的联营公司利润/(亏损)份额,也不包括非合并联营公司的折旧和摊销、财务费用和所得税费用(按我们的股权比例计算)(相当于我们按比例从非合并联营公司获得的调整后 EBITDA),现在包括了这些费用。前期已相应列示。 (8) 根据 CAFD 对截至 2023 年 3 月 1 日的 2023-2026 年期间资产的估计,包括 2023 年 3 月 1 日之前已达到 COD 的资产。请参阅“免责声明 - 前瞻性陈述”。
电动汽车在很大程度上依靠可充电电池单元进行储能。空气冷却具有简单的设计和高可靠性,仍然是控制电池温度的有效方法。但是,由于空气的热容量有限,其热性能很差。为了提高传热系数,同时还可以最大程度地减少成本,这项研究采用了21,700个缸形电池电池模块的各种细胞构型,包括带有纵向气流的冷却鳍。使用有限体积方法模拟质量连续性,动量和能量保护方程式,对各种雷诺数(1,679≤RE≤33,588)进行了三维数值模拟(1,679≤RE≤33,588)。结果表明,具有纵向空气冷却的层流循环系统可以在低排放电流(≤1.0c)的最佳操作条件下维持电池(≤1.0c),即使在周围30°C的周围温度下,螺旋长度通过螺旋长度降低了50%,并改变其位置并更改其位置(即,均位置的位置,均位置为0.95,in 0.95 c. coce in 0.95 c. coce in 0.95; 48.7°C.将螺旋鳍环路从1到五个将最大t的最大值降低了7.4%,最大δT最大降低了29.8%。超过五个螺旋回路,随着δT最大的增加,模型的温度一致性会恶化。多项式方程,以估计电池在各种排放电流下电池模块的某些热性能。
一周的日期星期二上课星期四课程阅读1月27日,29个基本概念山和植物Lutgens lutgens lutgens ch1-ch14 2 sep 03,05审查和冰层潮湿的热带(A)Lutgens 15.2-15.3 9月10日,12月10日,12月12日,12月12日干燥(B)中层(C&d)Lutgens 15.4-15.5 4 Sep&sep&hl&hl&glac&hl&hl&glac&glac&hl&hl&hl&hl&glac&gla Lutgens 15.6-15.7 9月24日,26热容量气体和液体讲座注释6 10月1日,01年10月1日,问题讨论气体和液体讲座/ MARSHALL CH1 7 OCT 08,10问题讨论中期15,17 10月8日15,17审查全球能源平衡MARSHALL CH 2 9 OCT 22,24 COMPARIT COMPARITION MARSHALL CH IAST COMPARIT垂直垂直结构。Marshall ch 3 10 Oct 29, 31 problem discussion convection part 1 Marshall ch 4.1-4.4 11 Nov 05, 07 no class (Election Day) convection part 2 Marshall ch 4.5-4.8 12 Nov 12, 14 discussion/ submit slides meridional structure Marshall ch 5 13 Nov 19, 21 problem discussion wind-driven circulation Marshall ch 10 14 Nov 26, 28 student presentations no class (Thanksgiving) 15 Dec 03, 05 Climate可变性TBD Marshall ch 12
(1) 已签约或已监管。西班牙、智利 TL 3 和意大利的收入受监管,智利 PV 1 和智利 PV 3 的收入不受监管,也不受签约或监管。(2) 根据截至 2024 年 3 月 1 日 CAFD 对 2024-2027 年期间的估计,按截至 2024 年 9 月 30 日的加权平均剩余年限计算。(3) 基于截至 2024 年 9 月 30 日的加权未偿债务。(4) 从 2023 财年起按收入百分比计算。不依赖自然资源的收入包括输电线路、高效天然气和热力、水务资产以及我们西班牙资产约 76% 的收入。(5) 代表截至年底拥有或合并的资产的总装机容量,无论我们在每项资产中的所有权百分比是多少,但 Vento II 除外,我们已将其 49% 的权益计入其中。 (6) 包括自收购 Vento II 以来 49% 的产量。其中包括我们收到补偿的风电资产弃风情况。(7) 包括 43 兆瓦,相当于我们在蒙特雷的 30% 股份(已于 2024 年 4 月出售),以及 55 兆瓦,相当于卡尔加里区域供热的热容量。(8) 生产的吉瓦时 (GWh) 包括蒙特雷 30% 的产量(已于 2024 年 4 月出售)。(9) 可用性是指资产可供客户全部或部分使用的时间除以合同或预算可用性(如适用)。(10) 自 2023 财年起按收入百分比计算。
摘要:尽管蛋白质结构的计算机设计取得了进展,但事实证明,通过此类方法设计有效的酶催化剂非常困难。该领域的挑战之一是通过计算机设计催化肯普消除反应的酶,这种反应在自然界中是观察不到的。在几种此类设计中,有一系列的催化速率常数可以通过实验室进化提高几千倍,尽管与催化类似化学反应的天然酶相比仍然很小。这些进化的设计酶还表现出与热展开无关的异常温度最适值。在这里,我们报告了这些酶的催化反应和构象热力学的广泛计算机模拟,以分析催化活性低和温度行为异常的根本原因。结果表明,酶-底物复合物存在较低的能量状态,这在具有过渡态类似物的晶体结构中是看不到的,这解释了低活性的原因。化学步骤和两种反应物状态之间的过渡的计算阿伦尼乌斯和范特霍夫图均为线性,并且发现所得的反应热力学使催化屏障完全熵化。基于我们计算出的热力学参数的动力学建模为最佳温度提供了两种可能的定量解释:308 K 时限速步骤的变化或底物结合后热容量变化为 − 0.3 kcal/mol/K,其中实验数据似乎与前者最为一致。关键词:酶动力学、Kemp 消除、酶设计、熵、热容量 ■ 简介
摘要:矿产资源和能源部估计,工业部门是南非最大的能源消耗部门。工业中约 66% 的能源最终用途用于制造过程中的供热。南非工业以前是在煤炭和电力能源价格低廉的背景下发展起来的。这导致了大量低效且碳密集的工业流程。随着燃料价格上涨、化石燃料枯竭的前景以及全球不断努力减少环境影响,有必要开发用于供热的替代能源。相当一部分热能可以通过太阳能技术产生。然而,太阳能供应本质上是可变的,并不总是与需求相匹配。因此,有必要将热能存储系统集成到太阳能发电厂中以确保可用性。热能可以通过三种主要方式储存,即显热、潜热和热化学热形式。磁铁矿是一种在 ~570°C 时发生反铁磁相变的材料。这会导致材料热容量可逆性飙升。这对于热能存储应用非常有利,使其能够比其他典型的显热存储介质存储更多的热量。磁铁矿在南非随处可见,通常是其他生产过程的废品。开发了一个实验室规模的原型,以分析磁铁矿在以空气为工作流体的开放(非加压)系统中的热存储特性。磁铁矿在填料床反应器中使用燃气燃烧器加热,并使用环境空气排放。磁铁矿能够储存高达 1000 o C 的热量,这使其适用于 CSP 工厂。实验结果将用于验证 CFD 模型,为未来的 CSP 工厂设计和工业过程加热应用提供参考。