我们报告了Millikelvin绝热去磁性消防制冷(MK-ADR)候选材料Naybgeo 4的合成,表征,低温磁和热力学测量值,该候选物质Naybgeo 4表现出扭曲的YBO 6磁性单元的平方晶格。磁化强度和特定热量表明弱相互作用的有效自旋1 /2低于10 K的有效自旋1 /2矩,质量 - 韦斯温度仅为15 mk,可以通过1 t级的磁场进行偏振。对于ADR性能测试,我们启动了从5 t的温度下的5 t启动〜2 k的温度,并达到〜2 k的温度,并达到150毫克的最低温度。变暖曲线表明在210 MK处的热容量中的磁性急剧过渡,这仅表示磁性弱弱。与在相似条件下研究的沮丧的ytterbium-Ox-odr ADR材料相比,S GS≃101MJ K-1 cm-3的熵密度并保持低于2 k的2 k的时间是竞争性的,而最小温度则更高。
我们研究了范德华(VDW)分层CRCL 3的磁性和磁性性能,并通过磁化和热容量测量值进行了磁性和磁性特性。crcl 3由于铁磁和防铁磁相互作用之间的强烈竞争而表现出复杂的磁性特性:一种约17 k的铁磁秩序,然后在14.3 k处进行防铁磁有序。在14.3 K.观察到在过渡温度附近7 t的场变化,而在18 K和0-3 T处的机械效率(G M)为1.17。磁电参数的这些值比CRI 3和其他分层VDW系统的值明显大。缩放分析表明,所有重新缩放的D S M(T,H)数据崩溃成单个曲线,这表明磁相变的二阶性质。上面的结果表明,环保的CRCL 3可以是非常昂贵的稀土材料的绝佳选择,用于用于液化液化的磁性冷藏。
热能存储 (TES) 技术可加热或冷却存储介质,并在需要时提供存储的热能以满足加热或冷却需求。TES 系统用于商业建筑、工业流程和区域能源设施,以在高峰需求期间提供存储的热能,从而减少峰值能源使用。TES 系统通常与电动或吸收式制冷机集成,以降低峰值电力成本,对于新建建筑,则可通过优化制冷机尺寸来降低资本成本。设备尺寸优化可提高加热或冷却工厂的整体效率,从而减少总能源使用量和二氧化碳 (CO 2 ) 排放量。TES 技术可支持具有可再生能源或化石能源发电的站点,包括热电联产 (CHP) 设施。借助 CHP,TES 可通过降低所需的峰值 CHP 热容量和增加年度 CHP 使用量来帮助优化设备尺寸。TES 还可为 CHP 应用中使用的燃气轮机提供涡轮机入口冷却,从而增加高温环境条件下的发电量。
储能系统是可再生能源系统管理能源供应和需求的重要组成部分之一。本文研究了一种新型混凝土热能存储系统与太阳能驱动的有机朗肯循环的集成。复合抛物面集热器 (CPC) 用于吸收太阳能。然后将太阳能转移到热能存储 (TES) 和有机朗肯循环 (ORC) 进行储热和发电。为了评估所提出系统的性能,对其进行了数值建模,并进行了参数研究,以找到 TES 的最佳参数,从而最大化 ORC 的工作时间。结果表明,TES 管道长度的增加会导致 TES 充电时间和热容量增加到 82 小时和 660 kW,太阳能电池板表面为 1000 m 2。此外,通过使用长度为 2000 m、直径为 0.4 m 的优化 TES 混凝土部分,ORC 的工作时间每天延长 3.10 小时。此外,太阳能驱动的ORC系统中使用TES导致系统发电量减少1.3%,发热量增加0.49%。
本文描述了典型的丹麦独立式单户住宅在由单独的热泵供热的情况下,在电网中提供热容量和灵活性的能力的理论分析。已经建立了一组原型房屋模型,用于通过 BSim 中的动态模拟分析它们随时间转移能源使用的能力(Wittchen 等人,2000-2019 年)。建立原型是为了分析不同时期建造的单户住宅,这些时期通常与建筑法规或建筑传统的变化有关。最后,原型建模的结果被缩放到位于区域供热区以外的丹麦单户住宅总数,以估计这些房屋未来的热容量。分析表明,高峰时段内高达 99% 的空间供暖能源需求可以转移到高峰时段之外,对室内温度的影响可以接受。本文描述了模拟方法和不同原型房屋的结果,以及全国范围内的热存储潜力的上调。此外,本文还描述了基于峰值响应和价格信号响应的选定房屋的灵活性研究。
(1) 根据 CAFD 对 2024-2027 年期间的估计,计算为截至 2023 年 12 月 31 日的加权平均剩余年限,包括 2024 年 3 月 1 日之前已达到 COD 的资产。 (2) 代表年末拥有或合并的资产的总装机容量,无论我们在每项资产中的所有权百分比是多少,但 Vento II 除外,我们已将 49% 的权益计入其中。 (3) 包括自收购 Vento II 以来 49% 的产量。包括我们获得补偿的风电资产削减。 (4) 包括 43 MW,对应于我们在蒙特雷的 30% 份额,以及 55 MWt,对应于卡尔加里区域供热的热容量。 (5) 生产的 GWh 包括蒙特雷生产的 30% 份额。 (6) 可用性是指资产全部或部分可供客户使用的时间除以合同或预算可用性(如适用)。 (7)基于CAFD对截至2024年3月1日的2024-2027年期间资产的估计,包括截至2023年12月31日的资产,包括在2024年3月1日之前已达到COD的资产。
干扰。衍射。极化。量子力学:假设;波粒偶性。换向者和海森伯格的不确定性原则。schrödinger方程(时间依赖和时间独立)。恰好可解决的系统:粒子中的盒子,谐波振荡器和氢原子。穿过障碍物。静电:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。Magneto静态:Biot-Savart Law,Ampere定理。电磁诱导。标量和向量电势,麦克斯韦方程。热力学,热力学功能,热容量焓,熵的第一和第二定律。在固体,晶体结构中键合。勇敢的格子。米勒指数。相互晶格。布拉格的法律和申请;衍射和结构因子。弹性特性,声子,特定于晶格的热量。游离电子理论和电子特异性热。电导率和热导率的Drude模型。大厅效应和热电功率。电子运动以周期性潜力,固体理论:金属,绝缘子和半导体。电介质。铁电。磁性材料。超导率:I型和II型超导体。
(1) 根据 CAFD 对 2024-2027 年期间的估计,按截至 2024 年 3 月 31 日的加权平均剩余年限计算。 (2) 100% 已签约或受监管。西班牙、智利 TL 3 和意大利的受监管收入,以及智利 PV 1 和智利 PV 3 的非签约或受监管收入。 (3) 根据截至 2024 年 3 月 31 日的加权未偿债务。 (4) 从 2023 财年起按收入百分比计算。不依赖自然资源的收入包括输电线路、高效天然气和热力、水资产以及我们西班牙资产获得的约 76% 的收入。 (5) 代表年末拥有或合并的资产的总装机容量,无论我们在每项资产中的所有权百分比是多少,但 Vento II 除外,我们已将其计入 49% 的权益。 (6) 包括自收购以来 Vento II 产量的 49%。包括我们收到补偿的风电资产削减。(7)包括 43 MW,相当于我们在蒙特雷的 30% 份额,以及 55 MWt,相当于卡尔加里区域供热的热容量。(8)生产的 GWh 包括蒙特雷生产的 30% 份额。(9)可用性是指资产全部或部分可供客户使用的时间除以合同或预算可用性(如适用)。
b' 在本研究中,我们报告了超快速瞬态热带 (THS) 技术用于测量氮化铝 (AlN) 薄膜各向异性热导率的实现情况。AlN 薄膜是通过在硅基板上制备的氧化硅 (SiO 2 ) 薄膜上在低温 (> 250 C) 下生长的反应性直流磁控溅射制备的。使用产生超短电脉冲\xc2\xad ses 的实验装置对热导率进行精确测量,并在纳秒和微秒时间尺度上电测量随后的温度升高。在 AlN 加工之前,将电脉冲施加在 SiO 2 上图案化的金属化条带内,并在 [0.1 \xe2\x80\x93 10 \xce\xbc s] 范围内选择的时间段内分析温度升高。当厚度从 1 \xce\xbc m 增加到 2 \xce\xbc m 时,AlN 横向平面(平面内)热导率分别从 60 增加到 90 W m 1 K 1(33 \xe2\x80\x93 44 W m 1 K 1)。这清楚地表明了 AlN 薄膜热导率的各向异性。此外,AlN 的体积热容量估计为 ~2.5 10 6 JK 1 m 3 。'
Ti 2 Fex(X = SI,GE和SN)的结构,机械,电子和晶格动力学性质已通过基于密度功能理论的第一原理计算探索。已经计算出这些Al Loys的平衡晶格常数,散装模量,电子带结构和磁矩值与先前的研究一致。计算了几个机械参数,例如弹性常数C IJ,Bulk Modulus B,Young Modulus E,剪切模量G和Poisson的比率υ,并基于这些计算,检查了机械稳定性。总磁矩的计算值与现有的理论数据密切一致,并符合Slater-Pauling规则。从其计算出的电子带结构Ti 2 Fesi,Ti 2 Fege和Ti 2 Fesn中被发现为平衡晶格常数的半金属合金,少数旋转能量间隙分别为0.820、0.850,0.850和0.780 eV。通过直接方法进行了完整的声子光谱及其这些合金状态的总密度和部分密度。计算出的声子频谱指出了这些合金的动态稳定度。此外,使用GIBBS2代码在Debye模型中研究了热力学特性,例如热容量,热膨胀,熵和Grüneisen参数,该代码具有从0到1500 k的一系列温度。