通常使用热检测器进行高功率激光器的光学测量,从计量的角度来看,必须针对可追溯参考标准检测器进行校准,以实现可靠的测量。传统上,大多数国家计量学院(NMI)将基于空腔或平坦的热探测器用作参考标准,用于在高光谱功率上传播辐射单元瓦特。这些设备可直接可追溯到电气SI单元(伏特,欧姆)或通过低光电功率(低温辐射计)的主要标准进行间接追溯。当前,在最好的情况下,使用这些参考探测器实现的光功率测量的不确定性在功率范围内在100 w至2.5 kW的范围内,在1 µm和10.6 µm左右的波长下。对于更高的激光功率测量值,很难将热检测器用作参考标准,因为它们的测量能力和准确性在很大程度上取决于用作传感器的腔体的吸光度和热容量。此外,腔尺寸(总热量)必须与要测量的最大激光功率成比例增加,并且更多的热质量转化为较慢的测量响应时间。
高效热泵与储热装置的集成对于实现电热一体化系统高效与灵活运行的协同具有重要意义。本文提出了一种带有热泵与储热装置的电热一体化系统,引入热流法,考虑能量传递、转换和储存过程,构建了该系统的总动态功率流模型,并在此基础上推导了系统总体约束和部件约束方程。在最小化风电弃风限电目标下,分析了热泵动态特性、储热容量、新增风电装机、新增热负荷对电力和热力出力的综合影响。结果表明,考虑热泵动态特性可使风电出力调度准确率提高8%;热泵与储热装置的组合对储存和释放过程的杠杆系数分别为3.06和0.17,有效提高了系统调度的灵活性。新增风电装置与新增热负荷的协调性,以及热泵运行温度的提高,更有利于促进风电消纳,提高系统整体灵活性。研究结果为制定含热泵—热储的电热一体化系统综合调度方案提供了必要的依据。
热化学能量存储(TCE)是利用太阳能的最有前途的方法之一。金属氧化物可以表现出可逆的氧化还原反应,这些反应可用于TCES应用。尤其是,过渡金属氧化物可以在高温下进行还原反应,同时吸收给系统的能量。稍后,当温度下降到相变温度以下时,可以进行放热重新氧化RE动作。在氧化还原Re作用过程中,空气可以用作氧气源和传热介质。最近,已经发表了一些有关金属氧化物用于TCES应用的研究。在这些金属氧化物中,铜氧化物由于其环状稳定性和合适的氧化还原温度而受到了极大的关注。在这项研究中,铜氧化物与ZRO 2,ZRO 2 -LA 2 O 3,MGAL 2 O 4,Mg 2 Al 2 A -LA 2 O 3,CEO 2,CEO 2 -LA 2 O 3作为支撑材料,将铜氧化物用作储能材料。最佳结果是从mgal 2 O 4,mg 2 al 2 o 4 -la 2 o 3的样品中获得的最佳结果。由于在这些系统中发生的其他可逆相变,例如Laalo 3和Cu 2 Al 2 O 4。尤其是mg 2 al 2 o 4 -la 2 o 3添加在循环稳定性和热容量方面都改善了系统。
摘要 温度对锂离子电池的性能、寿命和安全性有至关重要的影响。因此,了解单个电池单元和电池组内的热量产生和耗散对于制定适当的热管理策略至关重要。关键挑战之一是电池单元的界面传热难以量化。采用稳态绝对法和瞬态激光闪光扩散率法分别测量电池层堆栈和单个电池层的热导率。结果表明,闪光扩散率法在横向和平面内方向均具有更高的热导率。差异主要是由界面热阻引起的,因此可以通过稳态和瞬态测量来估算。为了研究界面热传输对单个电池级别以外的影响,使用了多物理场电池模型。该模型建立在电池组的多尺度多领域建模框架之上,该框架考虑了多种物理现象之间的相互作用。通过数值实验量化了使用热管理材料的电池模块的好处。在热失控事件中,发现界面热阻可以通过显著减少电池之间的热传递来缓解电池模块中的热失控。关键词:锂离子电池、热管理、界面热阻、多物理场建模术语 T 温度 k 热导率 α 热扩散率 ρ 密度 C p 热容量 li 厚度
(1)100%签约或受监管。在西班牙,智利TL 3和意大利的受监管收入以及在智利PV 1和智利PV的情况下进行的非合同收入。(2)根据2024-2027期间的CAFD估计,截至2024年3月31日,计算为加权年份。(3)基于截至2024年3月31日的加权未偿债务。(4)计算为2023财年收入的百分比。不依赖自然资源的收入包括输电线路,有效的天然气和热量,水资源以及我们西班牙资产收到的大约76%的收入。(5)代表年底拥有或合并的资产的总安装能力,无论我们在每个资产中的所有权百分比如何,除了Vento II之外,我们还包括我们的49%的利息。(6)自收购以来,包括49%的Vento II生产。包括限制我们获得赔偿的风能资产。(7)包括43兆瓦,对应于我们在蒙特雷(Monterrey)的30%和55 MWT,对应于卡尔加里(Calgary)地区供暖的热容量。(8)GWH生产的GWH包括蒙特雷(Monterrey)生产的30%。(9)可用性是指我们的客户可以完全或部分除以合同或预算可用性的时间。(10)基于截至2024年3月1日的2024-2027期间的CAFD估计,截至2023年12月31日,资产,包括2024年3月1日之前已达到COD的资产。
通过将库珀对的反平行电子旋转沿空地外方向锁定,使平面上临界磁场的平面上限上限超过了保利的极限。首先是在过渡金属二分法的完全二维单层中明确证明的,具有大型旋转轨道耦合和破裂的反转对称性。从那时起,几项研究表明它也可以存在于分层的散装材料中。在我们先前的研究中,我们阐明了基于散装超导性超导性的基本微观机制,基于通过绝缘层和限制反演对称性而导致的超导层之间的电子耦合减少。但较早的研究表明,在某些过渡金属二甲藻元中多型pauli paparagnetic极限也违反了。在这里,使用热容量测量值我们明确证明,原始的非中心体积4H A -NBSE 2多型物质显着违反了Pauli的极限。在理论模型中使用了使用实验确定的晶体结构从Ab ITIOL计算获得的频带结构参数,该模型在理论模型中使用,该模型提供了仅基于破裂的反转对称性的ISING保护的微观机制。
(1) 已签约或受监管。西班牙、智利 TL 3 和意大利的收入受监管,智利 PV 1 和智利 PV 3 的收入不受签约或监管。 (2) 根据截至 2024 年 3 月 1 日的 CAFD 对 2024-2027 年期间的估计,按截至 2024 年 9 月 30 日的加权平均剩余年限计算。 (3) 根据截至 2024 年 9 月 30 日的加权未偿债务。 (4) 从 2023 财年开始按收入百分比计算。不依赖自然资源的收入包括输电线路、高效天然气和热力、水资产以及我们西班牙资产获得的约 76% 的收入。 (5) 代表年末拥有或合并的资产的总装机容量,无论我们在每项资产中的所有权百分比是多少,但 Vento II 除外,我们已将 49% 的权益计入其中。 (6) 包括自收购以来 Vento II 的 49% 产量。包括我们收到补偿的风电资产削减。 (7) 包括 43 MW,相当于我们在蒙特雷的 30% 股份(于 2024 年 4 月出售)和 55 MWt,相当于卡尔加里区域供热的热容量。 (8) 生产的 GWh 包括蒙特雷 30% 的产量(于 2024 年 4 月出售)。 (9) 可用性是指资产全部或部分可供客户使用的时间除以合同或预算可用性(如适用)。 (10) 从 2023 财年起按收入百分比计算。
普通波特兰水泥(OPC) - 由于其出色的TES能力,良好的机械性能和低成本,因此已广泛用于热量储能(TES)应用。在这项尝试中,这项工作提出了一种升级程序,以对两种由OPC和杂化水泥制成的水合糊的特性进行建模(即一种替代的H污染物粘合剂),后者用于基于Geopolymer的复合材料(GEO)。首先,采用基于能量最小化和分子动力学的原子方法来建模CSH(硅酸盐水合钙)和NASH(铝硅硅酸盐水合物)阶段的热行为和热储存能力,这是基于OPC的Paste和Geo的主要阶段。然后,提出了提出的上缩放优化程序和中尺度的FEM均质化技术,以将基于OPC的糊和GEO的原子主要阶段的TES参数与均质的Meso/Macro量表值联系起来。为此,在OPC和GEO糊剂上的实验程序的结果都被视为校准/验证数值工具的基准。在几个尺度上进行的有希望的模拟和上刻度程序的模拟在均质化的温度依赖性热容量和热扩散率方面证明了与分析混合物的实验数据良好的一致性。2023作者。由Elsevier Ltd.这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。
学期MM4101材料的热力学和动力学:4个学分(3-0-2)简介和重要的热力学功能:热力学定律 - 焓,热容量,熵,自由能及其相互关系;解决方案 - 化学潜力,劳特和亨利法,吉布斯 - 杜希姆方程,活性确定,不同溶液的特性,准化学理论;异质系统 - 平衡常数,Ellingham -Richardson图,主要区域图;相图 - 相规,自由化组成图,固体液体线,逆行固相的演变;界面 - 能量,形状,外部和内部接口处的隔离;晶体固体和化合物晶体中的点不完美。MM4102材料过程中的传输现象:4个学分(3-0-2)热,质量和动量平衡的一般方程,层流,湍流,边界层的概念,摩擦因子,热量和质量传递系数以及无量纲相关性。层流和湍流及其在冶金过程和流化床的冶金过程 - 分析中的应用,在气体注入系统中的流体流。在冶金系统/粒子周围,冶金和流化的床,液态钢载体中的冶金系统热转移中的导电,对流和辐射热传递。涉及扩散,对流及其在均质和异质系统中的应用
本文研究了焚烧煤电厂煤底灰 (CBA) 废物中添加的砂粘土陶瓷的机械性能和热性能,以开发一种用于热能存储 (TES) 的替代材料。采用烧结或烧成法在 1000˚C 和 1060˚C 下开发陶瓷球。用压缩机压缩所得陶瓷,并使用 Decagon devise KD2 Pro 热分析仪进行热分析。还使用马弗炉在 610˚C 下进行热循环。发现 CBA 增加了孔隙率,从而使砂粘土和灰陶瓷的轴向拉伸强度增加到 3.5 MPa。选择了具有 TES 所需拉伸强度的陶瓷球。它们的体积热容量和热导率范围分别为 2.4075 MJ·m −3 ·˚C −1 至 3.426 MJ·m −3 ·˚C −1,热导率范围为 0.331 Wm −1 ·K −1 至 1.014 Wm −1 ·K −1,具体取决于沙子的来源、大小和烧成温度。所选配方具有良好的热稳定性,因为最易碎的样品经过 60 次热循环后也没有出现任何裂纹。这些特性使人们可以设想将陶瓷球用作聚光太阳能发电厂温跃层热能存储(结构化床)的填充材料。以及用于太阳能灶和太阳能干燥器等其他应用。