然而,这些解决方案可以分为四个独立的部分,可以单独使用或作为组合解决方案的一部分使用。它们是浸没、隔离、绝缘和扩散。浸没利用机械泵送和冷却系统(主动热管理),是解决与热相关的问题的更昂贵和更复杂的方法。不太复杂且成本较低的是被动隔离、绝缘和扩散热管理方法,它们结合了我们在 JBC 转换的性能材料。被动热管理依赖于性能材料固有的物理特性。例如,具有耐高温和固有低热导率的材料在隔离极端热量方面表现出色。其他材料利用热导率、发射率和相变化学等特性,有效地将热量从敏感组件转移到周围环境中,和/或将其分散到更宽的表面上,以最大限度地减少电池组内的热点。
• 高热导率:最低 3W/m·K • 易于分配且可在室温下固化 • 与各种表面具有出色的附着力 • 可硬化以保护电池免受外力 • 经过验证的可靠性和电绝缘性
非常适合于隔热和隔音材料。此外,玻璃材料的制造成本非常高,而且还需要长时间的热处理,从而消耗大量的能源。另一方面,通过采用低成本的常压干燥工艺,可以显著节省透明二氧化硅气凝胶的制造成本。然而,二氧化硅气凝胶由于其项链状微结构和弱的颗粒间结合,通常机械性较脆,14 并且在气凝胶材料中保持高隔热性和高光学透明度仍然具有挑战性。15 因此,在表现出低热导率的同时获得透明且机械强度高的二氧化硅气凝胶至关重要。在本研究中,我们报告了一种制造透明隔热二氧化硅气凝胶材料的合成策略,实现了 18 mW m 1 K 1 的低热导率和可见透明度(400 nm 和 800 nm 的广谱透明度为 70%)。溶剂交换过程促进了它们的光学透明度,而疏水表面改性则可抵抗环境压力干燥过程中的孔隙塌陷并保持其结构完整性。高可见光透明度、低热导率、8% 低声强的隔音效果以及加入透明聚合物的可扩展制造展示了它们在透明窗口材料中的潜在应用。同时,与透明二氧化硅气凝胶结合的太阳能接收器可以在 1 太阳辐射下 12 分钟内达到 122 摄氏度,比环境大气中高 200%。透明的工程结构
在过去的十年中,拉曼光谱已被证明是一种强大的光谱方法,有助于了解纳米级复杂而迷人的能量传输世界。人们开发了各种基于拉曼的方法来测量二维材料和其他纳米级结构的热性能。光热拉曼法常用于确定原子级薄材料(如石墨烯和过渡金属二硫属化合物 (TMD))的界面热阻 (R ″ tc ) 和热导率 (k)。[1–4] 该技术同时使用激光加热样品和拉曼信号表征。温度相关的拉曼信号和 3D 热传导模型用于提取热性能测量值。通过焦耳加热的拉曼测温法同样可以探测界面能量传输和热导率;通过用激光加热代替电流加热源,可以使用物理建模和温度相关的拉曼信号来确定 R ″ tc 。 [5,6] 最近,人们设计了另一种综合光热拉曼方法,使用连续波和脉冲激光来测量二维材料的热性能。[7] 该方法通过比较一系列激光光斑尺寸和脉冲持续时间的不同拉曼温度响应来测量单层和多层石墨烯的 k。此外,双激光拉曼测温法和双波长闪光拉曼映射法分别用于测量二维材料和纳米线的热导率。[8,9]
摘要:采用放电等离子烧结技术制备了不同成分的AlN-MgO复合材料,系统研究了成分对其微观结构、热性能和力学性能的影响。AlN-MgO复合材料中MgO的成分控制在20~80wt%。结果表明,烧结过程中未发生相变,MgO和AlN晶格内形成了不同的固溶体。AlN-MgO复合材料的晶粒结构比烧结的纯AlN和MgO样品更细。透射电子显微镜分析表明,复合材料中既存在富氧、低密度的晶界,也存在含有尖晶石相的干净边界。 100 o C时烧结的纯AlN样品表现出最高的热导率(53.2 W/mK)和最低的热膨胀系数(4.47×10 -6 /K);而烧结的纯MgO样品表现出中等的热导率(39.7 W/mK)和较高的热膨胀系数(13.05×10 -6 /K)。但随着AlN-MgO复合材料中MgO含量的增加,AlN-MgO复合材料的热导率从33.3降低到14.9 W/mK,而热膨胀系数普遍增加,随着MgO含量的增加从6.49×10 -6增加到10.73×10 -6 /K。MgO含量为60 wt%的复合材料整体表现出最好的力学性能。因此,AlN-MgO复合材料的成分和微观结构对其热性能和力学性能具有决定性的影响。
完整作者名单:袁鲲鹏;大连理工大学;张晓亮;大连理工大学能源与动力工程学院;常政;大连理工大学能源与动力工程学院;唐大伟;大连理工大学能源与动力工程学院;胡明;南卡罗来纳大学机械工程学院
这使得坩埚能够在其整个工作温度范围内获得优质的热导率,高机械强度和侵蚀性以及良好的冲击电阻。这些特性转化为耐用且坚固的坩埚,在较低温度环境中具有出色的性能特征。
• 当材料冷却至低温时,其性能会发生显著变化。热导率和电导率等性能可能会增加,屈服强度和极限抗拉强度也会增加,但延展性和韧性通常会降低,对于某些材料来说,甚至会从延展性转变为脆性。
*trt =热响应测试,热能性能的评估¹测量值,英格兰测试设施; GRD钻孔方法;资料来源:Tracto Technik²在10°C的地面温度下计算了提取能力; 2.5 WMK热导率;来源:GLD
对可持续清洁能源的需求推动了热电 (TE) 材料的发展,这种材料可将热能直接转化为电能并实现分布式冷却。[1–3] 能量转换效率通过无量纲性能系数 zT = S 2 σ T / ( κ ele + κ lat ) 来衡量,其中 S 、σ 、T 、κ ele 和 κ lat 分别为塞贝克系数、电导率、绝对温度、电子热导率和晶格热导率。[4–8] 尽管 zT 的表达式看起来很简单,但增加其值却是一项艰巨的任务。具体而言,虽然在半导体中通常获得较高的 S,但在金属中会发现较大的 σ ,而在非晶态材料中会实现较低的 κ lat 。[6,9] 这已经表明优化要求很复杂。显然,相关优化参数 S 、 σ 和 κ ele 紧密相关。这阻碍了 zT 的改善和优质热电材料的识别。因此,