在不同的测量条件下研究了由聚苯乙烯(PS)镍溴化物纳米颗粒(NIBR 2)制成的导电聚合物复合材料的光学性能和导热率:0、2、2、4、4、4、8和12 wt。%),紫外线辐射波长和温度范围(30-105°C),使用溶液铸造方法制备固体电解质薄膜,在300-800 nm的波长范围内记录了紫外线辐射的吸收和反射率光谱,并使用specentrophopophopoper- tometer记录。已经研究了制备膜的光学隙和基本光学常数,折射率和介电常数,并显示出对NIBR 2浓度的明显依赖性。对光学结果的分析表明,电子跃迁是直接在k空间中的。研究了制备的薄膜的热导率(K)作为温度和NIBR 2浓度的函数。发现通过添加Nibr 2含量和温度可以增强热导率。在加热过程中,声子被激活,电子跳到较高的局部能状态,从而提高了导热率。
图。1。硅的结果。(a)使用有限差异方法计算出2 nd-,3 rd和4 th -ifc的比较,使用LDA交换相关函数,使用有限差方法,δ为0.01Å和0.03Å。δ是有限差异方法中的原子位移。Å的超字词对应于th -ther dord rorder ifcs。(b,c)与(a)相同,但分别使用PBE和PBESOL功能。(d)使用LDA,PBE和PBESOL XC函数使用的声子分散,该功能通过使用0.01至0.03Å的任何δ计算得出。(e)使用LDA,PBE和PBESOL XC功能的三频道室温热导率的比较,δ为0.01Å和0.03Å。(f)与(e)相同,但在热导率计算中包含四个子散射。(g,h)通过使用不同的δ与LDA,PBE,PBESOL XC函数获得的力常数计算三个和四频散射速率。
• 兴奋:单一 CNT 材料的性能在强度上优于钢,在电导率上优于铜,在热导率上优于金刚石 • 现实:CNT 组件的性能会降低 • 布线的挑战在于提高 CNT 组件的性能——电线、纱线
在这项工作中,我们报告了商用锂离子电池的原始电极和降解电极的热导电性。以有或没有电解质溶剂和不同压实压力的情况下测量热导率。评估降解对内部和外部热传输的影响。此外,报告了总体细胞冷却效率是健康状况的函数,并估计了全细胞热电导率。对于降解材料,电极导热率的降低最高为65%。减少似乎是干石墨阳极最极端的。循环过程中细胞的机械夹具和寒冷温度似乎可以减轻导热率的降低。发现细胞冷却效率在70-75%的健康状况下降低了50%。由于电解质和盖料的量减少而降低了润湿,这被认为是电池冷却效率和电极导热率之间差异的原因。发现全细胞热导率降低的主要原因是由于阳极导热率降低和电解质溶剂的降低所致。
抽象的硅胶橡胶(SR)化合物准备在高温下施用O形圈。硅烷表面修饰的Fe 2 O 3和未修饰的Fe 2 O 3添加到SR化合物中,并通过对FESEM(现场发射扫描电子显微镜)(用于形态学)和TGA和TGA的分析来评估化合物,以及在不同温度,热敏度,硬度,硬度,硬度,硬度,压缩和压缩集合的热导率的测试。此外,在一家石化公司的7 bar压力和温度为180°C的压力下,在一家石化公司的在线气相色谱(GC)中制备了O形圈,并在一个在线气相色谱(GC)中进行了测试。获得的结果表明,SR的热导率,衰老电阻,热稳定性和机械性能下降:表面修饰的Fe 2 O 3填充SR,未修饰的Fe 2 O 3填充SR和SR,而没有Fe 2 O 3。过度使用Fe 2 O 3降低了机械性能和硬化性的加工性。随着温度升高,SR填充的SR的热导率填充有不同体积的体积百分比和未修饰的FE2O3。使用表面修饰的Fe 2 O 3提高了导热率并提高了衰老耐药性,最终增强了热电阻。这对于产生对高温具有抗性的O形圈特别有益。现场测试结果证实了O形圈与高温条件兼容。此外,在测试后,O形圈表现出低体积肿胀和光滑的表面,没有任何裂缝,水泡或不平衡。
Aeropan® 是一种专为那些需要在尽可能小的空间内实现最高程度隔热的建筑结构隔热而设计的面板。它由纳米技术气凝胶绝缘体与玻璃纤维增强透气聚丙烯膜组成,旨在实现低厚度隔热效果。 Aeropan® 厚度为 10 毫米,热导率为 0.015 W/mK,可帮助您通过恢复民用、商业和住宅建筑中的空间来减少能量分散。该面板的特性——最小的热导率、柔韧性和抗压性、疏水性和易于安装——使其成为确保新建和翻新结构最大程度隔热的不可或缺的产品。它是用于外部围墙和内墙、拱腹、窗框、阁楼以及解决热桥的理想产品。 Aeropan® 是外部和内部翻修、建筑修复和受建筑限制且需要最大限度生活舒适度的历史建筑的最佳选择。
无粘结剂NCB100是不含任何粘结剂,直接将纳米-亚微米CBN颗粒牢固粘结的CBN烧结体。由于其硬度和热导率比传统的CBN材料类型高,因此在钛合金和钴铬合金等难切削材料中具有高效率和长刀具寿命。
引言 产业界要求器件薄、轻、短、小、性能高,细间距、高密度封装成为必然手段。然而,为了完全实现产业化,许多特性还有待改进,如散热、导电性、热导率、尺寸精度等。此外,在3D封装组装结构中,特别是像堆叠封装(PoP),焊料凸块可能会因为顶部封装的重量而坍塌。几年前,产业界引入了铜芯焊球来改善这些问题。顾名思义,铜芯焊球以球形铜为芯,在中心镀镍和焊料[1]-[2]。镀镍可有效防止锡和铜之间的扩散。铜芯焊球本身具有优异的导电特性和间隙高度优点,可以控制和保持一致的空间,防止封装之间的凸块坍塌。除此之外,Cu还有三大物理特性:高熔点(1083℃)、高电导率、高热导率。
需要识别的材料示例包括小苏打和其他粉末、金属、矿物或液体。属性示例包括颜色、硬度、反射率、电导率、热导率、对磁力的响应或溶解度;密度不作为可识别属性。本文不试图定义看不见的粒子或解释蒸发和凝结的原子级机制。
热电材料能够实现热和电的直接转换,在制冷和发电方面有着良好的应用前景,引起了人们的广泛关注。考虑到更广泛的应用场景和在室温(RT)附近更大的需求,在过去的几十年里,在室温附近具有高性能的 TE 材料引起了广泛的研究关注。材料的 TE 性能通过其无量纲性能系数 zT = S 2 σT/(κ e +κ L ) 来判断,其中 S、σ、T、κ e 和 κ L 分别为塞贝克系数、电导率、绝对温度、热导率 κ 的电子和晶格分量。到目前为止,Bi 2 Te 3 基合金是唯一在 RT 附近具有理想 zT 值的商业化材料,而 n 型 Mg 3 Sb 2 最近被认为是另一种有前途的 TE 材料,其 zT 在 RT 附近约为 0.8。 Bi 2 Te 3 和 Mg 3 Sb 2 均具有本征的低晶格热导率κL,这是其高TE性能的基础之一。1-4