虽然申请人想砍掉 3 棵 F 级树,但剩下的树怎么办呢?不管这家公司是否愿意承认,所有这些树都是活的,保护着我们的岛屿和家园。查尔斯顿一开始就存在严重的洪水问题,谢天谢地,丹尼尔岛没有,但如果我们继续让这些公司进来开发更多的树木,丹尼尔岛每次涨潮都会被淹没。无论树木的评级如何,它们都会吸收水分。即使树木“被评为 F 级”,它们也会为其他植物提供一个生物群落,无论你是否意识到这一点,它们都会保护我们的社区。这些树木通过调节太阳、雨水和风的影响来控制我们的气候。树叶吸收和过滤太阳的辐射能,在夏天保持凉爽,这就是为什么这里经常比市中心凉爽的原因。你砍掉树木会伤害我们更多。重新种植树木虽然是一种善意的举动,但并不能起到同样的作用。天然森林比花盆里的树更能保护社区。树木还可以降低气温,并通过保持低水平的二氧化碳来降低温室效应的热强度。无论是地上还是地下,树木对于其所处的生态系统都至关重要。深根的根系将土壤固定在原处并抵抗侵蚀。树木吸收和储存雨水,从而减少暴风雨后的径流和沉积物沉积。这有助于地下水补给,防止化学物质进入溪流,并防止洪水泛滥。倒下的忘川草是极好的堆肥,可以丰富土壤。我还希望,如果我们要对树木进行分级,社区可以请自己的分级员,不仅要评估树木的健康状况,还要指出移除树木将对社区造成哪些伤害。分级员是公司雇佣的,可能会有非常偏见的意见。建筑公司不会
博帕尔。摘要- 近年来,铝合金在活塞制造中的应用引起了广泛关注,因为它比铸铁等传统材料具有许多优势。本综述旨在全面分析铝合金在活塞制造中的应用,重点介绍其机械性能、性能和潜在挑战。铝合金活塞的主要优势在于其重量轻,有助于减少往复质量并提高发动机效率。这一特性可以提高发动机转速、降低油耗并提高车辆整体性能。此外,铝合金活塞具有出色的导热性,有助于高效散热并最大限度地降低热膨胀相关问题的风险。关键词-铝合金、活塞、强度、综述、变形、温度分布。1. 简介铝活塞重量轻,因此与铸铁活塞相比,惯性力可以降低到更大程度。在 Al-Si 活塞合金中添加超过 12% 的硅以在高温下工作,因此由于添加 Si,活塞的热强度可以提高。发动机运转时活塞顶部的温度达到约 300°C,在此温度范围内膨胀程度超过铁,因此,为了将铝活塞与铸铁气缸正确配合,活塞在室温下必须松配合。添加硅会使活塞变硬,不易磨损,因此增加了基于纤维和基质成分百分比可实现的优势。MMC 的缺点是 a) 生产系统昂贵,b) 技术仍然相对不成熟,c) 生产过程复杂(尤其是长纤维 MMC),d) 专门生产服务的经验有限,e) 在颗粒 MMC 的情况下难以实现纤维颗粒的适当扩散,f) 颗粒分布不一致,g) 长纤维充当应力集中器,h) 不均匀性质和 i) 各向异性材料。这些缺点限制了金属基复合材料在汽车应用中的使用。除了用于活塞的先进材料外,还采用一些涂层来改善活塞性能。这些涂层技术将在下一节中讨论。过去几十年的研究和创新催生出复合材料,从用于汽车车身的玻璃纤维发展到用于航空航天和其他各种应用的颗粒复合材料。有些复合材料表现出更高的耐磨性、抗氧化性和抗腐蚀性。这些设计和特性机会是传统单片(非增强)材料无法实现的。复合材料在 20 世纪 70 年代被引入工程应用时被称为“未来材料”。由两种或两种以上可明显识别的成分组成的材料在日常生活中被用作天然复合材料。天然复合材料包括木材、土壤骨料、矿物、岩石等。复合材料是最具创新性的材料,由于材料性能的增强,它取代了航空航天、汽车、结构工程等领域的传统材料。这些复合材料是通过传统的金属生产和加工现场生产的。碳化物含量高的钢或石墨以及含有金属粘合剂、碳化钨和碳化物也属于这类复合材料。2. 现有文献综述在文献综述的基础上,重点介绍了研究空白。此外,本章最后还提出了研究目标。Singh 等人 [1] 本文的目的是研究铝和镁合金活塞的应力分布和热分析。在室温下,WE43A 的强度低于 Al-7Si 活塞,但在高温下,由于 WE43A 的机械和热性能优于 Al-7Si,因此可以承受更高的效率。因此,可以得出结论,对于热负荷相对较高的高性能发动机,镁合金是设计活塞的理想材料,但对于峰值压力高且作用时间较长的扭矩型发动机,铝基合金是设计活塞的理想材料。Taylor 等人 [2] 强调了汽车内燃机主要摩擦部件的摩擦学设计的重要性。可以得出这样的结论:对于热负荷相对较高的高性能发动机,镁合金是设计活塞的理想材料,但对于峰值压力高且作用时间较长的扭矩型发动机,铝基合金是设计活塞的理想材料。Taylor 等人 [2] 强调了汽车内燃机主要摩擦部件的摩擦学设计的重要性。可以得出这样的结论:对于热负荷相对较高的高性能发动机,镁合金是设计活塞的理想材料,但对于峰值压力高且作用时间较长的扭矩型发动机,铝基合金是设计活塞的理想材料。Taylor 等人 [2] 强调了汽车内燃机主要摩擦部件的摩擦学设计的重要性。