摘要 激光金属沉积 (LMD) 模拟对于增材制造工艺规划至关重要。本文介绍了 LMD 的 2D 加厚度非线性热模拟的计算实现,其中考虑:(i) 与温度相关的材料特性,(ii) 由于对流和辐射引起的热损失,(iii) 材料沉积过程中的几何更新,(iv) 相变和 (v) 激光与基材之间的相互作用。该实现计算与激光轨迹垂直的横切面上的温度场历史和焊珠积累的历史。材料沉积模型基于输送粉末的空间分布。本文介绍了对生长焊珠进行有效局部重新网格划分的数学和数值基础。将焊珠几何形状的数值估计与现有文献中的实验结果进行了比较。本模型对预测焊珠宽度(误差 15%)和焊珠高度(误差 22%)具有合理的精度。此实施为内部实施,允许纳入额外的物理效应。需要进行额外的工作来考虑基材上的粒子(热)动力学,这会导致大量的材料和能源浪费,进而导致在执行的模拟中高估实际温度和熔融深度。
节能窗口用于增加立面的热绝缘。这种绝缘窗口包含超薄的多层,透明的银色涂层,充当红外镜,可大大降低通过建筑物内部辐射发生的热损失。这些所谓的低发射涂层彻底改变了建筑物的隔热场,但也降低了太阳热增益系数,从而降低了冬季节能的潜力。在寒冷的气候下绝缘窗户应在EM波的传播中实现选择性行为。理想情况下,应该传输太阳能并反映中红外辐射,从而减少建筑物的加热需求。本科学论文介绍了基于有限差分时间域(FDTD)的数值研究,该研究重点介绍了银等离子体方形纳米霍尔阵列的光传递特性,并探讨了它们在绝缘窗口中的潜在应用。发现,周期性为350 nm且线宽为50 nm的纳米尔阵列具有出色的特性,并代表了在低E涂层中获得高太阳热增益的好候选者。这些发现有助于理解纳米荷尔阵列中的等离子效应,并提供有关此类结构在开发高级绝缘窗口中具有增强光学性能的实际应用的见解。
更大的可再生能源渗透率需要增加能源存储容量。需要长时储能 (LDES) 来平衡间歇性可再生能源供应与每日、每周甚至季节性的供应变化。在这些时间尺度上,传统的电化学电池变得不经济。固体颗粒热能存储 (TES) 是解决此问题的可行解决方案。固体颗粒可以达到比传统聚光太阳能 (CSP) TES 系统中使用的熔盐更高的温度 (> 1,100 ◦ C)。更高的温度可产生更高的功率循环热电转换效率。然而,在这些较高的温度下,更大的热损失和绝缘材料成本可能会抵消效率效益。在这项工作中,对能够储存 5.51 GWht 的全尺寸 3D 安全壳筒仓的绝缘设计进行了热分析,用于 LDES 用于电网电力。使用瞬态 FEA 方法模拟了提出的操作条件。经过 5 天(120 小时)的储存,在设计储存温度 1,200 ◦ C 下实现了 < 3% 的热能损失。考虑并满足了材料的热极限。还研究了存储系统性能对操作、气候和时间变化的敏感性。这些变化对系统的热效率影响很小,但对绝缘设计的其他方面确实具有重大影响。
1. 使用哪种能源估算方法(例如,修正度日、可变基准度日、ASHRAE 箱、ASHRAE 修正箱)。 2. 使用哪种气候数据格式(例如,度日、箱或每小时数据)?如果使用度日气象数据,使用什么基准温度以及为什么?不同的分受助者使用哪些气象数据站点? 3. 住宅单元的现有能源使用和能源需求是根据实际能源账单、普遍接受的工程计算还是两者确定的? 4. 能源审计是否解决了所有重要的供暖和制冷需求? 5. 如何估算传导、对流和辐射热损失(或增益)? 6. 能源估算方法如何处理来自内部来源的显热和潜热增益? 7. 在审计期间,如何估算预风化和后风化期间供暖和制冷设备的能耗(例如,稳态效率、部分负荷曲线)? 8. 能源估算方法如何使用鼓风机门读数和其他测试结果(例如管道泄漏)?9. 能源审计软件如何处理生活热水和/或家用电器测量?10. 估计的燃料/能源成本节省是否折算为净现值?11. 对于多户型审计,审计使用哪些内部验证功能(例如使用实际能耗对模型进行校正)来验证每次审计,或者受让人如何确保建筑物模型正确?
近年来,对月球的探索已成为私营和政府机构非常感兴趣的话题。ispace 的目标是通过利用月球资源和扩大我们在太空的存在,成为私营企业获得月球新商机的推动者。极地冰探测器 (PIE) 是一项原位资源利用 (ISRU) 探索任务,旨在寻找和描述月球极地地区的潜在水冰沉积物。在本项目的范围内,将讨论月球车热控制系统的开发。PIE 利用 ispace 开发并经过飞行认证的 Team HAKUTO 的 SORATO 月球车。本文探讨了三个关键领域的发现:月球极地永久阴影区 (PSR) 的运行、月球车系统的热控制设计和月球环境建模。对月球极地地区的热建模特别关注表面特性的识别、月球风化层特征和环境通量的建模。研究了运行任务约束,例如冷却速率和加热器功率要求。热设计理念旨在通过将探测车与地面分离、减少热损失和管理传导路径来最大限度地利用被动控制手段。研究了较大的温度波动引起的机械问题。对于操作范围较窄的元件,如电池、电机和外部安装元件,考虑了主动控制手段。概述了探测车热设计挑战和使 PSR 运行的初步发现。
我们介绍了在桑迪亚国家实验室(Sandia National Laboratories)追求的磁惯性融合(MIF)概念Maglif(磁化衬里惯性融合)。在Maglif中,用融合燃料填充了一个厘米尺度的铍管或“衬里”,轴向预磁性,激光预热并使用Z机器中高达20 mA的爆炸,以便产生血浆的热核柱。激光预热升高了燃料的最初绝热性,电流,使衬里和准绝热地穿绝热地通过Lorentz力压缩燃料,轴向磁场限制了在内螺旋中限制了从燃料造成的燃料损失,从而限制了燃料壁的热损失。maglif是证明融合相关温度,显着融合产生(> 10 13主要的DD中子产量)和带电融合颗粒的磁性诱捕的第一个MIF概念,并有可能产生多MJ产量以及在60 MA下一代的下一代脉冲脉冲机上产生显着的自我热量。在这项工作中,我们回顾了自2013年第一个融合融合生产实验以来,在桑迪亚国家实验室的Maglif中进行了主要研究,最后讨论了利用Maglif获得融合能量的高收益和考虑因素的可能性。
1 eric.tervo@nrel.gov 我们提出了一种太阳能热能转换系统,该系统由太阳能吸收器、热辐射电池或负照明光电二极管和光伏电池组成。由于它是一个热机,因此该系统还可以与热存储配对,以提供可靠的发电。来自太阳能吸收器的热量驱动热辐射电池中的辐射复合电流,其发射光被光伏电池吸收以提供额外的光电流。基于详细平衡原理,我们计算出完全集中的阳光的极限太阳能转换效率为 85%,而一个太阳的极限转换效率为 45%,其中吸收器和单结电池的面积相等。理想和非理想太阳能热辐射光伏系统在低带隙和实际吸收器温度下的表现优于太阳能热光伏转换器。它们的性能增强源于对非辐射生成/复合的高耐受性以及将辐射热损失降至最低的能力。我们表明,与低光密度下的太阳能热光伏设备相比,具有所有主要损耗的实际设备可以实现高达 7.9%(绝对值)的太阳能转换效率提升。我们的结果表明,这些转换器可以作为低成本单轴跟踪系统的高效热机。关键词:太阳能、热存储、热辐射、热光伏
图 1:1971 年和 2018 年按燃料类型划分的全球一次能源结构占比 11 图 2:到 2050 年实现 1.5°C 气候目标所需的全球能源相关二氧化碳排放量减少量 12 图 3:可再生能源目标的地理分布 14 图 4:部门耦合与能源系统灵活性关系的说明 17 图 5:潜在电气化技术应用的示意图摘要 18 图 6:使用 IRENA 城市可再生能源规划平台的分析层次 21 图 7:IRENA 城市可再生能源规划平台的主要功能 23 图 8:建筑围护结构的热损失 28 图 9:不同研究对智能充电的影响 33 图 10:可再生能源存储部门耦合系统 48 图 11:崇礼分析的说明性概述 51 图 12:实现 100% 可再生能源崇礼通过采取跨部门措施实现的能源效率提升 52 图 13:哥斯达黎加电动公交车试点项目 58 图 14:研究区域的地理分布和情景排放量预测 59 图 15:2050 年碳减排效果最佳时的碳减排量 62 图 16:行业耦合机会水平说明 69
摘要。能够缩小夏季可再生能源发电和冬季供暖需求之间季节性差距的技术对于减少能源系统的二氧化碳排放至关重要。钻孔热能存储 (BTES) 系统提供了一种有吸引力的解决方案,其正确的尺寸对于其技术经济成功至关重要。大多数 BTES 设计研究要么采用详细的建模和仿真技术,这些技术不适合数值优化,要么使用明显简化的模型,不考虑操作变量的影响。本文提出了一种 BTES 建模方法和混合整数双线性规划公式,可以考虑季节性 BTES 温度波动对其容量、热损失、最大传热速率以及连接的热泵或冷却器的效率的影响。这使我们能够准确评估其在不同温度和不同操作模式(例如 BTES 直接排放或通过热泵)下运行的不同区域供热和制冷网络中的集成性能。考虑一个在电力的二氧化碳强度随季节变化的情况下使用空气源热泵的案例研究,研究了集成 BTES 和太阳能集热器的能源系统的最佳设计和运行。优化旨在最大限度地降低能源系统的年度成本和二氧化碳排放量,该优化适用于两种供热网络温度和五种代表性碳价。结果表明,最佳 BTES 设计在尺寸和运行条件方面都发生了变化,与基于标准空气源热泵的系统相比,排放量最多可减少 43%。
尽管取得了上述进展,但是由于SRFB在高温下固有的热阻,导致PEC充电装置光电压损失,因此人们对其实际应用的看法并不乐观。例如,c-Si装置的功率损失率为0.45%/℃(70℃时损失约200mV)。14具体来说,光电压损失会消除氧化还原化学反应的驱动力。然而,尚未对热对RFB光充电性能的影响进行彻底的定量分析。SRFB的独特工作原理是电解质流动产生了一条通路,该通路可以通过从光电极到液体流动的热量传递来弥补热损失,液体流动直接位于光电装置后面,如图1a所示。这意味着电解质有效地充当了冷却剂。在这里,我们讨论了光充电性能在氧化还原液流电池应用中的热电化学行为,并使用基于我们之前验证过的研究 12 和传热理论的组合模型揭示了 PEC 设备集成系统的协同效应。15 为了有效地传递内容,我们开发了一种创新的多功能光充电电池概念(图 1a)。我们使用了从科罗拉多州国家可再生能源实验室 (NREL) 获得的典型冬日和典型夏日的真实太阳光谱数据 16(图 1b)。建议的设计使用主动热管理,采用传热和强制