加热室被发现是提取水的最佳方法,因为它具有隔热作用并且是一个完全封闭的系统。加热室的最大平均提取率高达~0.9 kg/h,以优化加热时间(表面加热:~0.09 kg/h;加热棒:~0.32 kg/h)。然而,与表面加热和加热棒相比,该设计具有缺点,例如在寿命和复杂性方面。在制定各个任务目标时必须将这些因素考虑进去。
而不是产生热量,而是地热系统将热量从一个地方传递到另一个地方。通常称为封闭环系统的热交换器被埋在地面中,并通过一系列管道循环水基溶液。该解决方案捕获了存储的太阳能温暖,并将其交给房屋中的单元。
家用热水供暖占多户建筑总能耗的 32%,是实现脱碳的重要机会。我们进行了广泛的市场评估,以了解和记录全美多户建筑家用热水电气化的主要技术和经济障碍。通过该计划,我们进行了 77 次访谈,以了解改造和新建场景中热水系统电气化的主要市场驱动因素和技术挑战。受访者涵盖了热水系统生态系统中的广泛利益相关者,包括供应商、制造商、设计师、业主、公用事业公司和开发商。本文记录了关键的访谈要点,包括广泛的市场障碍、技术挑战和热门技术属性列表,这些属性可以为电热水器研究、开发和部署工作提供相关的设计标准。在经济和能源效率方面,受访者绝大多数提到空间限制、冷空气排放以及缺乏关于分布式与集中式设计选择的明确指导是大规模采用电热水器的主要挑战。业主和开发商寻求占地面积最小的系统,以最大限度地提高可出租空间和利润。此外,分布式热泵解决方案应平衡管道成本,以减少冷排气进入空调区域。最后,市场需要明确的指导,以选择分布式还是中央电热水系统。
摘要:本文介绍了使用 Cambi THP ® 技术对污水污泥 (SS) 进行厌氧消化 (AD) 并进行热水解 (THP) 后获得的沼气的能量潜力。所列数据为 Tarn ów (波兰) 污水处理厂 2020 年的数据。文中给出了沼气的详细能量平衡及其在热电联产过程中以及在水锅炉和蒸汽锅炉中产生热量时的使用情况。本文包含工艺流程不同阶段处理的 SS 量以及干物质和干有机物含量的数据。该工厂年运行期间,处理了来自 Tarn ó w 污水处理厂 (WWTP) 和区域 WWTP 的 8684 吨市政 SS 干固体 (tDS),生产出 3,276,497 Nm 3 沼气。所生产沼气的能量潜力为 75,347.06 GJ。沼气的平均热值为 23,021 kJ/Nm 3。获得的沼气产量可满足 THP 100% 的热能需求。研究期间的年平均比沼气转化率为 0.761 Nm 3 /kg 干有机物减少,污泥中有机物含量平均减少量为 64.60%。
印度尼西亚是一个热带国家,全年太阳辐射强度相对稳定,每天 10 到 12 小时,平均 4.8 kWh/m²/天。这一巨大潜力可用于加热沐浴用水。基于太阳能集热器的热水技术现已在商业市场上广泛使用。此外,太阳辐射的热能存储是使用显热进行的,需要很大的体积。假设下午才用水,那么加热后的水就会储存在管子里。在几项研究中,人们使用了相变材料 (PCM) 来最大限度地提高太阳辐射的热能存储 (TES)。此外,PCM 使用潜热来吸收和释放热量。这会根据太阳能集热器产生的水温进行调整,达到 70°C。因此,使用的潜在 PCM 是固体石蜡,它在市场上随处可见,熔化温度为 40° 至 50°C。这项研究是在使用 80 厘米 x 50 厘米平板集热器的太阳能热水系统上进行的,并使用石蜡进行热能储存。同时,热交换器使用一根直径为 1 英寸的管子串联起来,管长为 50 厘米,有 36 根棒。所用石蜡的质量为 15 公斤或 17.7 升。此外,测试是在水的流速变化下进行的,即:2、3 和 4 升/分钟,太阳辐射为:997.5 W/m²、1183 W/m² 和 1399.8 W/m²。从结果来看,在 15 公斤的 PCM 石蜡中,热能储存过程耗时 3.2 小时,总储存能量为 3.6 MJ。此外,1,399.8 W/m² 的太阳辐射被用作能源,流速为 4 升/分钟的水作为热传递介质。因此,这种辐射对于向 PCM 的传热过程有非常显著的影响,而 2 到 4 lpm 的流速则没有。
330-092-0015 Effective Dates for Regulated Equipment ¶ The following list specifies the effective dates for equipment standards, test procedures, listing, and labeling requirements which have been adopted in these rules.¶ (1) Bottle-type water dispensers, as defined in OAR 330-092-0010(1): The standards in OAR 330-092-0020(1) are effective for bottle-type water在2022年1月1日或之后制造的分配器。(2)商业热食品持有柜,如ORS 469.229(13)所定义的:ORS 469.233(2)的标准是2009年9月1日生效的,在俄勒冈州销售,2010年9月1日,安装。 469.233(3)是2009年9月1日生效的,用于安装俄勒冈州的设备。在OAR 330-092-0010(14)中定义:OAR 330-092-0020(5)中的标准对于在2022年1月1日或之后制造的便携式电动水疗中心有效。 (7)ORS 469.229(6)中定义的电池充电器系统:ORS 469.233(7)的标准有效:¶(a)2014年1月1日或之后制造的大电池充电器系统。在2018年6月13日或之后生产的联邦监管的大型电池充电器系统被预先获得进一步的州法规。¶(b)零售业出售的小型电池充电器系统不是USB充电器系统,不是电池容量为20瓦小时或更长时间,并且在2014年1月1日或在2014年1月1日之后制造。在2018年6月13日或之后生产的联邦监管的小型电池充电器系统被抢占进一步的州法规。¶(c)零售业出售的小型电池充电器系统是USB充电器系统,其电池容量为20瓦小时或更长时间,并且在2014年1月1日或之后。在2018年6月13日或之后生产的联邦监管的小型电池充电器系统被抢占了进一步的州法规。¶(d)在2017年1月1日或之后生产的零售业未出售的小型电池充电器系统。在2018年6月13日或之后制造的联邦调节的小电池充电器系统是从进一步的州法规中供不应求的。Federally regulated inductive charger systems that are manufactured on or after June 13, 2018 are pre-empted from further state regulation.¶ (f) Battery backups and uninterruptible power supplies, manufactured on or after January 1, 2014, for small battery charger systems for sale at retail, which may not consume more than 0.8+ (0.0021xEb) watts in battery maintenance mode, where (Eb) is the battery capacity in瓦特小时。Federally regulated uninterruptible power supplies that are manufactured on or after June 13, 2018 are pre-empted from further state regulation.¶ (g) Battery backups and uninterruptible power supplies, manufactured on or after January 1, 2017, for small battery charger systems not sold at retail, which may not consume more than 0.8+ (0.0021xEb) watts in battery maintenance mode, where (Eb) is the battery capacity in瓦特小时。在2018年6月13日或之后制造的联邦监管的不间断电源被预先获得进一步的州法规。¶(8)高光输出双端双层石英卤素灯,如ORS 469.229(27)所定义的,ORS 469.233(8)(8)(8)的标准为2016年1月1日,设备均为1月1日的empplion。 OAR 330-092-0020(9)中的标准对高CRI荧光灯有效,该灯在2023年1月1日或之后制造。
影响 TES 性能的因素 ................................................................................................................ 4 分层 ...................................................................................................................................... 4 热损失 ...................................................................................................................................... 6 下降系数 ................................................................................................................................ 6 Ecosizer 计算 ...................................................................................................................... 7 多个 TES 储罐 – 并联管道与串联管道 ............................................................................................. 7 非加压 TES ............................................................................................................................. 8 未来研究 ............................................................................................................................. 10 结论 ............................................................................................................................................. 12 引用文献 ................................................................................................................................ 13
表格清单 表 1-1. 热水器周围空间类型(按建筑类型) ...................................................................................... 3 表 2-1. HPWH 的标准 TechID UEF 要求 ...................................................................................................... 11 表 2-2. 家用热水器的 ENERGY STAR 标准 ...................................................................................... 11 表 2-3. 商用热水器的 ENERGY STAR 标准 ...................................................................................... 11 表 2-4. 测量 HPWH 的 TechID UEF 要求 ............................................................................................. 12 表 3-1. 每日平均热水量(加仑)比较 ...................................................................................................... 17 表 3-2. 燃气储水式热水器 ................................................................................................................ 17 表 3-3. 燃气即热式热水器 ................................................................................................................ 18 表 3-4. 燃气热水锅炉 ........................................................................................................................ 19 表 3-5. 电储水式热水器 ................................................................................................................ 19
请访问 TheSpruce.com 了解如何确定您家电力服务的安培数。This Old House 还提供了一段实用视频,展示了电工如何升级您的电表和配电盘。如果您将来可能安装电动汽车充电器、空气源热泵或其他新电器,升级您家的电力服务是一项特别好的投资。这种升级通常需要一天时间才能完成,通常花费 2,000 至 3,000 美元,其中可能包括费用和当地许可机构的许可。升级您家的电力服务需要持证电工与您的电力公司和当地许可机构进行协调。