无论气候如何,有些区域开始需要新的和翻新的建筑物中的电热与气体。虽然空气源热泵是一种全电动解决方案,但在使用大量室外空气时,极端温度可能会导致单位压缩机关闭或无法启动。保护压缩机并确保每个压缩机都可以在其操作信封内启动,离开室内线圈的空气必须在30°F或以上。因此,强烈建议可用于无占用和“单位冷启动”期的再循环阻尼器,以确保在室内线圈上存在30°F的空气,以便铅压缩机的初始化。循环阻尼器允许ASHP单元根据需要利用循环空气来实现启动铅压缩机所需的制冷压力。
抽象的现代热泵在过去的50年中已经显着发展,以在广泛的条件下提供能量效率的冷却和加热。但是,改进的建筑法规和更高的能量效率标准的结果是,在某些情况和应用中,热泵可能难以在室内湿度保持舒适的水平,尤其是在潮湿的气候下。本文考虑了可以以多种模式运行的住宅热泵系统的建模和控制,包括常规的冷却模式和重新加热模式。在加热模式下,凝结(温暖)制冷剂通过室内热交换器重新加热条件空气。反馈的配置和作用降低了蒸发剂的温度,从而增加了水冷凝速率并降低了室内相对湿度水平。提出了一种对照算法,该算法可以协调可变速度压缩机,电子驱动的膨胀阀和可变速度风扇的作用,以实现室内空气温度调节和室内湿度调节。该算法包括在操作模式之间切换的混合逻辑。对多模式热泵的模拟耦合,并与位于潮湿气候区域中的典型住宅建筑的动态模型结合在一起,既显示温度和湿度调节。
•等效的全载时间 - 建筑物的位置和使用会影响建筑物在一年中需要加热的时间。这个数字是对使用加热的每年小时数的度量,假设它是在全功率上或关闭的加热。它被计算为每年千瓦时除以kW中的峰值热载荷。如果仅在白天(例如办公室)使用建筑物,则选择1,800。如果每天使用24小时(例如医院病房),则选择2,400。全载等效小时表达了热量提取的程度,并且小时越高,地面源将耗尽越快,井眼的可持续热萃取速率就越低。
表 1-1. 研究目标、研究问题和方法 ...................................................................................................... 2 表 2-1. 每种数据收集模式的采样方法 .............................................................................................. 9 表 2-2. 样本目标和已完成的数据收集 ............................................................................................ 11 表 2-3. 数据收集摘要 ...................................................................................................................... 13 表 2-4. 量化 BEFLH 的核心 M&V 方法 ............................................................................................. 18 表 3-1. 2019-20 年研究期间的 ccASHP 安装活动 ............................................................................. 21 表 3-2. ccASHP 节省变量和来源的摘要 ............................................................................................. 22 表 3-3. 场所级 ccASHP 加热分析损耗 ............................................................................................. 27 表 3-4. ccASHP 场所级分析方法选择 ............................................................................................. 28 表 3-5. 场所级和 M&V 分析方法之间的加热 EFLH 比较 ................................................................................. 29 TRM 预测和基于 M&V 的 ccASHP 供热负荷系数比较 .............................................................. 29 表 3-7. 按系统类型划分的基于 M&V 的 ccASHP 供热负荷系数 ............................................................................. 30 表 3-8. 按负荷分类划分的基于 M&V 的 ccASHP 供热负荷系数 ............................................................................. 30 表 3-9. 场所级和 M&V 分析方法之间的制冷 EFLH 比较 ............................................................. 31 表 3-10. 包括 NYSERDA 研究结果在内的平均额定和有效 ccASHP 效率比较 ............................................................................................................. 33 表 3-11. 实现的 MMBtu 节约与 ccASHP 不同事前估计的比较 ............................................................................................................................. 34 表 4-1. 2019-20 研究期间的 GSHP 安装活动 ............................................................................................. 42 表 4-2. GSHP 节约变量和来源的总结 ...................................................................................................... 43 表 4-3. 加权平均额定和有效 GSHP 效率的比较 .............................................................................. 47 表 4-4. 实现的 MMBtu 节约与 GSHP 不同事前估计的比较 .................................................................. 48 表 4-5. 其他 GSHP 研究结果与 TRM 假设 ............................................................................................. 49 表 5-1. 2019-20 年研究期间的 HPWH 安装活动 ............................................................................. 53 表 5-2. HPWH 节约变量和来源的总结 ............................................................................................. 54
一个热泵用于满足建筑物的加热要求,并将其保持在20°C。在室外空气温度下降到-2°C的一天中,估计建筑物以80,000 kJ/hr = 75,000 btu/hr = 22 kW = 22 kW = 6.3吨)。如果在这些条件下的热泵的COP为2.5:
从第一部工业革命到目前正在进行的第四次工业革命的人类社会的进步与能源使用和技术状况的变化有关。是引入蒸汽,电力还是生产过程的自动化。所有这些活动都与能源的使用有关,如果我们不计算水力发电,则是从燃烧的木材,煤炭,天然气,油加工或核裂变中获得的。所有提到的商品都代表着一种存储能源的方式,人们根据社会的需求和需求有目的地存储和使用它们。除了核能外,从上述地区获得能源与资源来源的产生(所谓的碳足迹)有关,这被认为是导致气候变化和全球变暖的主要来源。
正确安装热泵热水器对于节约能源和提高客户满意度至关重要。该技术已经成熟;然而,在安装过程中需要特别注意与传统储水式热水器的关键区别。空气循环
