Barnes, MA, & Turner, CR (2016)。环境 DNA 生态学及其对保护遗传学的影响。保护遗传学,17 (1),1-17。Belle, CC、Stoeckle, BC 和 Geist, J. (2019)。水生保护中淡水环境 DNA 研究的分类和地理代表性。水生保护:海洋和淡水生态系统,29 (11),1996-2009。Berry, O.、Jarman, S.、Bissett, A.、Hope, M.、Paeper, C.、Bessey, C.、Schwartz, MK、Hale, J. 和 Bunce, M. (2021)。使环境 DNA (eDNA) 生物多样性记录在全球范围内可访问。环境 DNA,3 (4),699-705。 Blackman, RC、Ho, H.-C.、Walser, J.-C. 和 Altermatt, F. (2022)。利用环境 DNA 揭示河流集水区多营养生物多样性和食物网特征的时空模式。《通讯生物学》,5 (1),259。Bruton, M.、Merron, G. 和 Skelton, P. (2018)。《博茨瓦纳奥卡万戈三角洲和乔贝河的鱼类》(第 120 页)。Struik Nature Publishers。Callahan, BJ、McMurdie, PJ 和 Holmes, SP (2017)。在标记基因数据分析中,精确序列变体应取代操作分类单位。《ISME 杂志》,11 (12),2639–2643。 Carraro, L., Mächler, E., Wüthrich, R., & Altermatt, F. (2020). 环境 DNA 允许在淡水生态系统中提升生物多样性的空间模式。《自然通讯》, 11 (1), 3585. Cilleros, K., Valentini, A., Allard, L., Dejean, T., Etienne, R., Grenouillet, G., Iribar, A., Taberlet, P., Vigouroux, R., & Brosse, S. (2019). 解锁
(Andarawis-Puri等,2015; Thomopoulos等,2015; Millar等,2021; Pearce等,2021)。恢复受伤肌腱的正常结构在运动医学中构成了重大挑战。肌腱衍生的干细胞(TDSC)是肌腱组织中发现的一种间充质干细胞。严格来说,由于其生物异质性,TDSC不能将其分类为常规干细胞。考虑到它们分化为有限数量的特定细胞谱系的能力,将它们描述为“茎/祖细胞”细胞更为准确。此外,它们具有某些干细胞特征,例如克隆性,高增殖率和自我更新能力(Bi等,2007)。我们总结了补充表S1中TDSCS研究中报告的细胞培养方法。简而言之,培养和隔离肌腱干细胞的方法如下:在无菌条件下,肌腱组织在37°C下用胶原酶(通常是I型或II型,通常为I型或II型,浓度约为0.1% - 3%),持续几个小时,以持续几个小时,以隔夜隔断以分离细胞。然后在特定的培养基(例如低葡萄糖DMEM)中收集并培养细胞,并在5%CO 2的环境中添加10% - 20%的血清,并在37°C下保持在37°C,并以适当的时间间隔进行,以维持细胞的耐用性。tdsc的特征是存在诸如CD44,CD146,CD105和CD90之类的标记,这是间充质干细胞的典型特征(Zhang和Wang,2010a; Lee等,2018)。由于其独特的细胞微环境,与骨髓衍生的间充质干细胞相比,TDSC具有更大的产生肌腱和关节组织的能力(BMSC)(Tan等,2012)。当前对TDSC的细胞来源主要是:大鼠,小鼠,兔子和人类;研究的少量TDSC来自马,猪。主要研究重点是:治疗靶标和药物作用,疾病机制,组织工程和细胞特性。(补充表S1)肌腱损伤后,肌腱完整性的成功恢复涉及三个阶段:炎症阶段,细胞增殖阶段和细胞外基质(ECM)重建阶段。在炎症阶段,它涉及炎症细胞的内部效果,炎症因子的分泌以及TDSC的募集和激活(Vinhas等,2018; Ackerman等,2021)。细胞增殖阶段的特征是新肌腱细胞的产生,而ECM重建阶段涉及新的ECM和肌腱结构的形成。TDSC通过将ECM分泌给肌腱并区分为肌腱细胞,在肌腱修复中起着至关重要的作用(Zhang等,2019a)。使用适当的技术激活内源性肌腱干细胞或移植TDSC已成为促进肌腱损伤修复的创新方法(Lee等,2015)。因此,TDSC具有增强肌腱和肌腱骨连接的愈合的重要潜力(Chen等,2013)。TDSC在骨科研究中的重要性导致了近年来的大量研究(Leong等,2020)。但是,大多数研究都集中在TDSCS研究的特定方面,从而导致对该领域文献的全面分析。特定的文章声称采用文献计量方法来研究TDSC(Long等,2022);但是,其文献搜索内容不准确。尽管TDSC的发现可以追溯到2003年,但该研究的选定文献包括大量出版物
意识表示个人对环境及其生存的认识和确认(Giacino等,2018)。作为意识,意识和清醒的两个整体组成部分紧密相互交织。前者是指大脑的激活,而后者则表示环境和/或自己的感知(Bernat,2010年)。意识障碍(DOC)是由多种病理疾病引起的,包括呼吸和心脏骤停,创伤性脑损伤(TBI),脑血管事故,严重的代谢性疾病,脑部疾病,脑部疾病,感染,药物滥用以及其他严重的神经疾病。在这种情况下,意识受到唤醒和意识的改变,这些改变在结构或功能上归因于上升的网状形成或罗斯特拉中脑的损害,或者是脑半球的广泛病变。在临床上,这些扰动表现为昏迷,无反应的觉醒综合征(UWS),以前称为营养状态(VS)和最小意识状态(MCS)(Giacino等,2014; Zheng et al。,2023)。
摘要:在这项研究中,热点区域,QTL簇和候选基因具有八个与耳朵相关的玉米特征(耳长,耳长,耳道,内核行号,每行的内核数,内核长度,内核宽度,内核宽度,内核厚度和100个内核重量),并总结了三个十二次。本评论的目的是(1)全面总结和分析与这八个与耳朵相关性状相关的QTL的研究,并确定位于玉米染色体上的热点式bin区域以及与耳朵相关性状相关的关键候选基因,以及与QTL和稳定的QTL和QTL clusers和QTL clusers相关的杂物和QTL clusique和QTL clusequique and Migapppers的信息,并兴起。用于高收益和高质量玉米的映射,基因克隆和育种。先前的研究表明,与耳朵相关性状的QTL分布在玉米中的所有十种染色体上,而表型变异的解释为单个QTL范围为0.40%至36.76%。总共确定了所有十种染色体的耳朵相关性状的23个QTL热点箱。最突出的热点区域是4号染色体上的bin 4.08,其中15个QTL与八个与耳朵相关性状有关。此外,本研究确定了与耳朵相关性状相关的48个候选基因。在这些研究中,有五个被克隆和验证,而QTL热点中的二十8个候选基因是由本研究定义的。本评论对QTL映射的进步以及与八个与耳朵相关特征相关的关键候选者的识别提供了更深入的了解。这些见解无疑将帮助玉米育种者制定策略来开发高产玉米品种,从而有助于全球粮食安全。
免疫实践咨询委员会 (ACIP) 是一个由医疗和公共卫生专家组成的联邦咨询委员会,为 CDC 提供建议。在获得 FDA 批准后,该小组将审查所有可用的科学信息并就哪些人应该接种疫苗提出建议。所有三种疫苗(RSV、流感和 COVID-19)均已获得 FDA 批准使用并得到 ACIP 推荐。Novavax 已获得 FDA 批准用于紧急使用 (EUA*)。
产生新基因表达的抽象DNA突变是达尔文进化的重要原材料。新基因调控的一个潜在来源是移动DNA,有时可以通过向外指导的启动子来驱动其在基因组中插入位点附近的基因的表达。但是,我们不知道这种能力的频率有多,也不知道移动DNA可能会发展起来。在这里,我们为插入序列家族IS3解决了这些问题,这是一种简单形式的原核生物移动DNA的家族。首先,我们估计至少有30%的IS3序列向外指导的启动子。第二,我们将高通量诱变与大量平行的记者测定法相结合,以表明在我们研究的所有IS3序列中,单点突变足以创建外向启动子。我们发现,在18'607突变体IS3序列中,有5.6%的启动子活性从头出现。启动子优先出现在每个IS3序列中的出现热点。这些热点与已经存在或通过突变新创建的启动子图案重叠。启动子活动的一条通用途径是获得一个现有-35盒子下游的-10盒子,我们称之为“ shiko出现”。总体而言,我们表明移动DNA具有驱动新基因表达的高潜力。这使移动DNA非常适合其宿主有机体驯化。它还提出了有关这种潜力如何发展的有趣问题。简介
•在单个AAV递送两个Arcus核酸酶之后,我们观察到外显子45-55的切除和编辑的多种组织类型的肌营养不良蛋白,包括心脏,隔膜和骨骼肌。•股四头肌中72%的切除事件是通过完美的重新连接的Arcus目标位点发生的。这可能归因于Arcus生成的唯一3'悬垂。•甲壳虫治疗的动物中胃肌肌肉的最大力量输出(MFO)得到了显着改善,达到了在非疾病酶,对照小鼠中观察到的MFO水平的86%。•肌营养不良蛋白被恢复为肌肉纤维,并在PAX7+细胞(肌肉卫星细胞的标志物)中具有编辑的肌营养不良蛋白转录物的证据。•这项概念验证研究证明了Arcus基因编辑方法对DMD进行治疗的治疗潜力,并支持持续发展的临床候选提名。
科学家们正在利用 GPS 观测地球表面的垂直运动来估计水、雪和冰总量的变化。这种方法和你在浴室磅秤上称体重的方法相同。当你站上磅秤时,你会压下弹簧。弹簧被压下的量与你的体重成正比。因为我们知道弹簧的强度,所以我们可以推断出你的体重。磅秤是有弹性的:当你走下磅秤时,弹簧会恢复到初始位置。随着雨雪增加地球表面的储水量,地面会被压下。我们使用 GPS 测量垂直地面位移,精度为 2-5 毫米。(在你的车里,GPS 会将你的位置告知你,误差在 10 米以内;在喷气推进实验室,我们会以更高的精度估计 GPS 位置,尽管这需要几天的时间。)因为地球的大致强度是已知的(对于 50 公里以上的表面负荷),所以可以推断出地球表面储水量的变化。固体
稳定的 HIV 包膜 (Env) 三聚体蛋白免疫原已被证实能诱导强烈的自体中和抗体反应。然而,关于由病毒载体免疫原表达的稳定 Env 的免疫原性和效力的数据有限。在这里,我们比较了两种基于可变环 2 热点 (V2 HS) 优化的 C.1086 包膜 (Env) 序列的改良安卡拉痘苗 (MVA) 疫苗的免疫原性和效力,一种表达膜锚定 gp150 (MVA-150),另一种表达可溶性未裂解融合前优化 (UFO) gp140 三聚体 (MVA-UFO),以 DNA 引发/MVA 加强方法对抗恒河猴 (RM) 中的异源 2 级 SHIV1157ipd3N4 直肠内攻击。两种 MVA 疫苗也表达 SIVmac239 Gag 并形成病毒样颗粒。DNA 疫苗表达 SIVmac239 Gag、C.1086 gp160 Env 和恒河猴 CD40L 作为内置佐剂。此外,所有免疫接种均采用皮内 (ID) 方式进行,以减少疫苗特异性 IFN g + CD4 T 细胞反应的诱导。我们的结果表明,MVA-150 和 MVA-UFO 疫苗均在血清和直肠分泌物中诱导了类似的 Env 特异性 IgG 反应。疫苗诱导的血清抗体显示出针对攻击病毒的 ADCC 和 ADCVI 活性。与之前通过肌肉内途径 (IM) 使用类似免疫原的研究相比,ID 免疫诱导的 SHIV 特异性 CD4 和 CD8 T 细胞反应明显低于 IM 免疫。攻击后,MVA-UFO 接种
摘要:预计气候变化会影响植物的种群结构和地理分布。物种分布模型被广泛用于评估范围变化和植物对气候变化的脆弱性。尽管大量建模研究,但对现有种群如何应对气候变化的反应知之甚少。我们调查了人口结构和易受生物多样性热点分布高度限制分布的子弹药的气候变化的脆弱性。我们通过密集的现场工作改善了分配知识。我们进行了茎长度的人口普查,作为所有已知人群的年龄的代理。我们使用集合预测来考虑10个未来气候场景的项目分布,并为该物种的分布开发了一种新颖的气候变化脆弱性指数。我们发现,平均茎长度降低,年轻植物的比例增加,而水果植物的大小随着A. Moorei面对更大的气候变化脆弱性而减小。我们将这些结果解释为最近适应气候变化的证据,包括降低的成人寿命和较早的繁殖发作。由于这些变化,人口中少年的比例增加。
