作为利用基本专利注册来推进与热电发电相关的新业务的合资企业而成立。 ・2013年在大阪大学设立开发基地。 ・2016年被认定为NEDO STS项目后,进行了第三方新股配售。 ・2018年获得京都市创业企业评估委员会的A级认证。 ・2020年在京都大学桂创业广场设立开发基地。 ・2022年被近畿经济产业局评选为“J-Startup KANSAI”。 ・2023年10月被选为G7广岛峰会的G7大阪堺部长会议参展。 ・11月,从全球200家公司中被选为奥地利政府“GO AUSTRIA Fall 2023”的受邀公司(2家)。 ・12月参加“TechBIZKON VII 数字化——DX微电子”。
电路 V out 和输出电功率估计为 P out = | V out I load |。图 4 显示了 | I load |
用于:汽车温度控制座椅(CCS),HUD,ADA,光学通信,LD温度控制,冷却器,PCR,小型冰箱,颈部冷却器,脸部摩托车,热电发电,空调,空调,烘干机
用于:汽车温度控制座椅(CCS),HUD,ADA,光学通信,LD温度控制,冷却器,PCR,小型冰箱,颈部冷却器,脸部摩托车,热电发电,空调,空调,烘干机
摘要 - 如今,可再生能源被认为是能源生产领域的更好选择。可以用更具吸引力的替代品取代传统能源(即石油和天然气)。这带来了几个好处,例如温室气体排放量低、气候变化和全球变暖减少。本文对热电发电 (TEG) 进行了全面回顾。这些是利用塞贝克效应发电的可再生能源的应用。在这种类型的系统中,两种不同的材料在其末端熔化。一种在热侧,另一种用作冷侧。本文是一项调查,包括与热电发电机集成的应用和混合系统(基于可再生能源)。此外,还回顾了在混合系统中加入热电发电对此类系统整体性能的影响的研究。这些系统可以看作是对回收水管、光伏板和汽车尾气等设备废热的投资,以在混合系统中产生额外的电力。
开发 - 试制耐振单腿基本结构模块,并在振动环境下(正弦波33Hz、最大加速度5G)验证发电操作(振动环境条件以JIS汽车零部件耐振要求为准) - 在上述振动环境下,模块发电耐久性达到100小时以上 - 耐振模块结构及相关周边技术的知识产权申请 自2017年度起,针对上述目标2的内容,我们决定在振动环境下(正弦波33和67Hz、最大加速度5和10G)验证发电操作。 为了实现这些目标,我们将采取以下步骤: ①提高环保型Mg2Si热电发电材料的热耐久性经过申请人迄今为止的努力,已确认Mg2Si材料本身的发电元件在空气中600℃下经过3000小时以上仍能保持稳定。此项委托工作将确保引入热电池所需的模块化结构的耐用性。 ② 开发最适合发电的新型高耐久单腿结构模块 本次委托项目中,Mg2Si热电材料具有基本热电发电能力高、在热电材料中重量最轻、环境负荷小等特点。为此,采用了单腿型热电发电模块结构,该结构仅由n型半导体Mg2Si构成。 ③在发电环境中,使用振动试验机,在接近真实环境的条件下评估发电特性。通过叠加汽车零部件通常所要求的水平的振动环境(JIS规定的汽车零部件耐振环境:正弦波加速度5G、33Hz),努力确保发电模块的耐久性。 B.热电池专用DC-DC电源转换器实用化基本要素技术本项目的目标如下: 目标1:专用于热电发电模块的电容器堆叠型DC-DC转换器,转换效率达80%
・耐振 Unireg 基本结构模块的原型以及励磁环境下的发电运行验证(正弦波 33 Hz,最大加速度 5 G)(励磁环境条件为 JIS 汽车零部件的耐振要求)・模块功率在上述振动环境下的发电耐久性为100小时以上 ・抗振模块结构及相关外围技术的知识产权申请 此外,从2017年度起,上述目标2决定验证激励环境(33和67 Hz正弦波,最大加速度5和10 G)下的发电操作。 为了实现这些目标,我们将采取以下举措。 ① 提高环境负荷低的Mg 2 Si热电发电材料的热耐久性 申请人之前的努力表明,Mg 2 Si材料本身即使在600℃下3000小时或更长时间后也能保持发电元件的电阻值。气氛稳定。这项委托工作将确保模块结构的耐用性,这在将其引入热电池时是必要的。 ②开发针对发电优化的高耐用新型Unireg结构模块在本次委托工作中,Mg 2 Si热电材料具有基础热电发电能力高、热电材料中重量最轻、环境影响低等特点。为此,我们将采用unireg型热电发电模块结构,该结构只能由n型半导体Mg 2 Si构成。 ③ 在发电环境下使用振动试验机评价接近实际环境的发电特性汽车零部件一般要求水平的振动环境(JIS所示的汽车零部件耐振动环境:正弦波加速度5G、33Hz) )保证发电模块的耐用性。 B.热电池DC-DC功率变换器实际应用的基础技术本项目的目标如下。 目标1:热电发电模块专用电容堆积式DC-DC转换器的转换效率达到80%
碳强度可能会因电源结构的变化而发生变化,例如从热电发电到太阳能或风力发电的转移。另一方面,由于每个经济实体的各种努力,能源效率可能会改变。例如,在商业领域,企业可以提高工厂生产过程的能源效率,或开发最终产品,这些产品可以有效地使用低能输入来运作。如果家庭使用这样的节能最终产品,则能源效率在总水平上有所提高。这种考虑表明,生产使用能源商品的公司通过两个渠道在总体水平上的能源效率发展:生产过程的能源效率和产品本身的能源效率。