1。使用溶剂提取和研究影响Crystallite size-https://iopscience.org/article/10.10.1088/2053-1591/abc2df 2。大规模P-Type的制造75%SB2TE3-25%BI2TE3热雾化和热等速度按下热电学材料和热等静态按下 - https://doi.org/10.1016/j.materresbull.2020.1020.110924 3.MOS2和N之间的协同作用,S-掺杂的石墨烯氧化石墨烯支持的钯纳米颗粒用于氢进化反应-https://doi.org/10.1016/j.matchemphys.2020.2020.123106 4。M@Pd(M = Ni,Co,Cu)的电催化研究支持N,S掺杂的S掺杂的氧化石墨烯对氢和氧气进化反应 - https://doi.org/10.1002/slct.202002200 5。分子印迹的聚苯胺分子受体基于分子的化学传感器,用于三聚氰胺 - https://doi.org/10.1002/jmr.2836 6。使用分子印刷的多丙二醇 - 氧酸作为分子识别元件 - https://doi.org/10.4028/www.scientific.scientific.net/nhc.29.61 7。共晶复合材料(BI,SB)2TE3/TE热电材料的机械和热电特性
我们展示了如何同时控制 ZnO 薄膜的电和热传输特性,该薄膜是通过原型原子层沉积 (ALD) 工艺从二乙基锌 (DEZ) 和水前体制备的。关键的 ALD 工艺参数是在 DEZ 前体脉冲之后施加的 N 2 吹扫时间。我们利用 X 射线反射率测量来表征薄膜的生长特性,利用光致发光光谱来表征结构缺陷,利用电传输测量来表征载流子密度、电阻率和塞贝克系数,利用时域热反射测量来表征热导率。光致发光光谱数据表明,延长吹扫时间会产生结构缺陷,从而增加电子载流子密度;这可以解释薄膜电导率增强的原因。同时,缺陷可能会阻碍薄膜中的热传输。因此,实现电导率的同时增加和热导率的降低对热电学至关重要。此外,在光学和微电子领域中,人们非常希望对半导体 ZnO 薄膜的本征电传输特性进行简单的控制。
事实证明,最大化能带简并度和最小化声子弛豫时间对于推进热电学是成功的。与单碲化物合金化已被公认为是收敛 PbTe 价带以改善电子性能的有效方法,同时材料的晶格热导率仍有进一步降低的空间。最近有研究表明,声子色散的加宽衡量了声子散射的强度,而晶格位错是通过晶格应变波动实现这种加宽的特别有效的来源。在本研究中,通过精细控制 MnTe 和 EuTe 合金化,由于涉及多个传输带,PbTe 价带边缘附近的电子态密度显著增加,而密集的晶内位错的产生导致声子色散有效加宽,从而缩短声子寿命,这是由于位错的应变波动较大,这已由同步加速器 X 射线衍射证实。电子和热改进的协同作用成功地使平均热电性能系数高于工作温度下 p 型 PbTe 的报道值。
摘要。由于其高稳定性和宽范围的带隙,已经大规模研究了半身的材料。在这里,我们研究了LICDX(X N,P,AS,SB和BI)的基本物理和热电学参数,并观察到这些化合物具有F43M空间组,其空间群为5.31、6.06、6.25、6.64和6.81Å的LICDN,LICDP,LICDAS,LICDAS,LICDAS,LICDSB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LICDB和LITBIDB和LITBI,所有化合物都表现出直接的带隙半导体行为,除了licdbi显示金属性质。在近红外和可见区域中,这些化合物显示出极好的光伏行为,但它们限制了远红外和紫外线的辐射。通过检查热电特性,我们分析了在300 K时,ZT在这些材料中的三种材料的p和n区域都达到了统一性,使它们在环境温度下使它们具有前瞻性热电候选。所研究的热力学特性证实了材料稳定,这将激发实验者。
我的研究领域是声子、光子和极化子在纳米、微观和宏观材料中传播的热传输,应用于热极化子和热电子学(热计算)、电子学、光子学、热电学等。玻尔兹曼传输方程、麦克斯韦电磁方程和涨落电动力学是我在理论和实验上研究线性和非线性材料在稳态和动态条件下的热传输的主要工具。我的主要贡献分为三个方面:第一,预测新的物理效应和热器件的概念,例如纳米线和纳米薄膜中极化子热导的量化、热忆阻器、热波二极管和量子热晶体管。第二,开发了根据 3ω、时域热反射、光热辐射测量、热波谐振腔和光声学技术记录的实验数据拟合热性能的分析模型。第三,对由纳米颗粒或多孔材料组成的固体基质复合材料的热导率进行建模和测量。这三个研究方向主要针对极性材料(即 SiO 2 、SiN、SiC)、相变材料(即 VO 2 、镍钛诺)和介电材料(薄膜和导线形式)进行了开发。
有机半导体(如共轭聚合物)具有优异的光学和电子特性,以及化学/结构可调性、良好的机械性能和溶液加工性,正在成为广泛商业化的无机半导体的可行替代品。1,2目前限制有机材料性能的一个缺点是其电子电导率低。通过在共轭聚合物主链上添加额外的正电荷或负电荷,可以通过电化学方式或使用分子掺杂剂对材料进行掺杂,可以将电子电导率提高几个数量级。3–6掺杂共轭聚合物在电致变色窗、光电子学、热电学和生物电子学方面显示出巨大的应用前景。3,4人们开发了各种分子掺杂方法,例如在薄膜沉积之前将聚合物和掺杂剂在溶液中共混合,或者依次通过气相或溶液相将掺杂剂添加到聚合物薄膜上。4,7分子掺杂剂起着双重作用。首先,它与共轭聚合物发生电荷转移,导致导电电荷的形成;其次,需要离子化的掺杂剂来补偿聚合物主链上的电荷。共轭聚合物表现出混合
热电偶是高温下最常用的温度计之一。截至今天,只有几种类型的热电偶可以承受以上的温度以上的温度,但是在这些高温下,它们通常的温度测量不确定性约为1%。超过1600℃温度跨度,大多数高温热电偶倾向于在测量中漂移,从而导致其输出错误的读取实际温度的故障且不准确。本论文通过组合两个不同的碳纤维的组合探讨了碳纤维作为用于热电偶的材料。聚丙烯腈(PAN)和人造丝纤维被用至200℃的温度,在其中记录了热电偶的输出电压。该研究显示了在较低温度下使用市售的碳纤维,用于这种类型的热电偶的电动力的有前途且稳定的线性输出。在K型和S型的常用热电偶之间进行了比较,结果表明,碳热电偶在25℃时具有K或S型热电偶的热电效率的21%。对于较高温度下的功能,已经通过文献研究了类似的石墨材料,并发现在2000年以上的较高温度下,热电学稳定性的潜在增加,这表明基于碳的热电偶非常适合高温测量。
热导率(𝜿)控制热量如何在材料中传播,因此是一个关键参数,它约束光电设备的寿命和热电学(TES)的性能。在有机电子中,了解决定的是难以捉摸且具有实验性挑战。在这里,通过在不同的空间方向上测量𝜿 𝜿 𝜿 𝜿 𝜿 𝜿 𝜿,它可以统计地显示微观结构如何解锁两个明显不同的热运输方式。𝜿在远程有序聚合物中遵循标准的热传输理论:改进的排序意味着更高的𝜿和各向异性增加。𝜿随着骨架,较高的分子量和较重的重复单位而增加。在其中,电荷和热传输齐头并进,可以单独通过胶片纹理将其解耦,并由分子动力学模拟支持。,𝜿与持久性长度和重复单元的质量负相关,因此发现了异常的行为,尽管有用,但却是有用的。重要的是,对于准无形共聚合物(例如,IDT-BT)𝜿随着电荷迁移率的增加而减小,与半晶体对应物(在可比较的电力电导率下)相比,降低了10倍。最后,提供了有机半导体中高和低的特定材料设计规则。
菲利普·金教授于1990年在首尔国立大学获得物理学学士学位,并于1999年获得哈佛大学的应用物理博士学位。从1999年至2001年,他是加州大学伯克利分校物理学博士学位研究员。从2002 - 2014年开始,他是物理系哥伦比亚大学的教职员工。目前,他是哈佛大学的物理学和应用物理学教授。Kim教授的研究重点是对运输现象的介绍研究,尤其是低维纳米级材料的电气,热电和热电学特性。金教授获得了许多荣誉和奖项,包括本杰明·富兰克林物理奖章(2023年)和奥利弗·E·巴克利奖,《美国物理学会》(2014年)。他是美国国立科学院,美国艺术与科学学院的当选成员,也是美国物理学会的研究员。 Kim教授毕业了21名博士生,培训了32名博士后研究员,并发表了250多篇论文。他是美国国立科学院,美国艺术与科学学院的当选成员,也是美国物理学会的研究员。Kim教授毕业了21名博士生,培训了32名博士后研究员,并发表了250多篇论文。Kim教授毕业了21名博士生,培训了32名博士后研究员,并发表了250多篇论文。
摘要:半导体需要稳定的掺杂才能应用于晶体管、光电子学和热电学。然而,这对于二维 (2D) 材料来说是一个挑战,现有的方法要么与传统的半导体工艺不兼容,要么会引入时间相关的滞后行为。本文我们表明,低温 (<200 ° C) 亚化学计量 AlO x 为单层 MoS 2 提供了稳定的 n 掺杂层,与电路集成兼容。这种方法在通过化学气相沉积生长的单层 MoS 2 晶体管中实现了载流子密度 >2 × 10 13 cm − 2、薄层电阻低至 ∼ 7 k Ω / □ 和良好的接触电阻 ∼ 480 Ω · μ m。我们还在这个三原子厚的半导体上实现了创纪录的近 700 μ A/μ m (>110 MA/cm 2 ) 的电流密度,同时保持晶体管的开/关电流比 >10 6 。最大电流最终受自热 (SH) 限制,如果器件散热效果更好,最大电流可能超过 1 mA/μ m 。这种掺杂的 MoS 2 器件的电流为 0.1 nA/μ mo,接近国际技术路线图要求的几个低功率晶体管指标。关键词:2D 半导体、电流密度、掺杂、高场、自热、MoS 2 、Al 2 O 3 T