摘要在这项研究中,聚(乙烯 - 乙烯基乙酸酯)/介孔二氧化硅EVA/SBA-15纳米复合材料,其中含有0.5、1.5和2.5 wt%的不官能化和功能化的SBA-15,由熔体混合器中的熔体混合在内部混合器中制备。介孔二氧化硅是通过溶胶 - 凝胶法合成的,并通过六烷基三甲氧基硅烷(HDTMS)进行了修饰。进行了几种特征;包括傅立叶变换红外光谱(FTIR),扫描电子显微镜(SEM),差异扫描量热法(DSC),热重分析(TGA),机械支撑物,动态机械分析(DMA)和介电研究,以表征精心化材料的物理学性质的表征。结果揭示了FTIR和SEM确定的介孔二氧化硅的成功合成和功能化。纳米复合材料的结晶度降低,弹性模量随介孔二氧化硅的掺入而增加。拉伸特性的测量表明,与纯EVA相比,纳米复合含量1.5 wt%F-SBA-15的拉伸强度为17.2%。DMA分析验证了EVA/SBA-15样品的机械性能的改善。 显示的SEM图像DMA分析验证了EVA/SBA-15样品的机械性能的改善。显示的SEM图像
摘要:羟基磷灰石纳米粒子 (HApNPs) 是一种尺寸小于 100 纳米的无机材料。它们的主要特性是生物相容性,因为它们的化学成分与人体骨骼相似,因此适合在生理环境中使用。这些特性使它们成为一种有前途的甾醇衍生药物输送替代品,与传统的药物输送方法相比,具有更好的靶向性和控制释放性。在本研究中,使用化学沉淀法合成了负载胆固醇和 β-谷甾醇的 HApNPs。通过傅里叶变换红外 (FTIR) 光谱对纳米粒子 (NPs) 进行表征,以识别功能组并确认 HApNPs 上存在甾醇。使用透射电子显微镜 (TEM) 和动态光散射 (DLS) 分析了 NPs 的形态和尺寸。通过热重分析确定甾醇衍生物的负载量,并评估了纳米粒子在酸性介质中的稳定性。结果表明,成功合成了负载胆固醇和β-谷甾醇的HApNP,其呈球形,直径小于100纳米。数据证实胆固醇和β-谷甾醇已掺入HApNP表面,并且随后释放。此外,纳米生物界面中甾醇衍生物的存在增强了纳米粒子对酸性条件的抵抗力,表明它们有可能作为药物纳米载体在肠道中靶向释放,而不会在通过胃的过程中发生改变。关键词:羟基磷灰石纳米粒子、胆固醇、β-谷甾醇、界面、酸性介质。
摘要:在这里,在第一次,我们介绍了有关高室,单相钙晶的质子电导率的数据。bazr 0.2 sn 0.2 ti 0.2 hf 0.2 ce 0.2 o 3 - δ,bazr 0.2 sn 0.2 sn 0.2 ti 0.2 ti 0.2 hf 0.2 hf 0.2 hf 0.2 -y 0.2 o 3 -δ,bazr 1/7 sn 1/7 sn 1/7 ti 1/7 ti 1/7 ti 1/7 hf 1/7 hf 1/7 hf 1/7 hf 1/7 nb 1/7 nb 1/7 y 1/7 y 1/7 y 1/7 o 3 0.15 0.15 ti 0.15 ti 0.15 haz and bazr and bazr and bazr and bazr CE 0.15 NB 0.15 Y 0.10 O 3-δ单相蛋白酶合成。在电测量之前,使用X射线差异(XRD),扫描电子显微镜(SEM),X射线光电光谱(XPS)和热重分析(TGA)表征材料。以下实验结果表明,研究的高渗透钙晶是质子导体:(1)从干燥到潮湿的气氛转换后观察到的质量增加,将水掺入材料结构中。(2)电化学阻抗光谱(EIS)表明,在大气中存在水蒸气的情况下,总电导率增加,而其激活能量降低。(3)用H 2 O和D 2 O彼此之间的大气中的电导率彼此之间存在,显示了质子导体典型的同位素在高渗透氧化物中的效应。o
本研究旨在调查基于椰子油的相变材料 (PCM) 在建筑储能应用方面的热性能。椰子油被归类为由可再生原料制成的脂肪酸组成的有机 PCM。但低热导率是有机 PCM 的主要缺点之一,必须加以改进。石墨烯可以成为提高有机 PCM 热性能的有效材料。在本研究中,使用了潜热容量为 114.6 J/g 和熔点为 17.38 ◦ C 的椰子油。通过将石墨烯超声处理到椰子油中作为支撑材料来制备 PCM。制备的 PCM 的质量分数为 0、0.1、0.2、0.3、0.4 和 0.5。使用 KD2 热性能分析仪在循环恒温浴模拟的不同环境温度 5、10、15、20 和 25 ◦ C 下进行热导率测试。通过差示扫描量热法测定潜热、熔点和凝固点,使用热重分析 (TGA) 测定热稳定性,使用透射电子显微镜和傅里叶变换红外光谱分别检查形态和化学结构。这项研究的结果表明,在椰子油中添加石墨烯可改善热性能,在 20 ◦ C 时,0.3 wt% 的样品中改善效果最明显。由于 PCM 内的分子运动,潜热降低了 11%。然而,TGA 表明,复合 PCM 在环境建筑温度范围内表现出良好的热稳定性。
抽象羧甲基西米淀粉(CMS)水凝胶是通过将CMS溶解在浓搅拌下形成凝胶中的盐酸(HCL)溶液中的。所研究的参数是CMS百分比,酸溶液的浓度,反应时间和反应温度的影响,以确定CMSS水凝胶的最佳准备状态。在2.0m酸溶液中的CMS中的60%在室温下的反应时间为12小时是CMSS水凝胶的最佳条件。通过使用傅立叶变换红外(FT-IR),热重分析(TGA)和扫描电子显微镜(SEM)来表征水凝胶。FTIR光谱显示出一个附加的吸收带,表明在羧甲基化过程中,在淀粉分子链上取代了Ch 2 Coo -Na +基团,而CMSS水凝胶的光谱显示出一个额外的锐利吸收带,表明从HCL溶液中换成CMS中的Na中的Na在HCl溶液中。CMSS水凝胶的SEM图像显示出结构的孔,并连接到形成网络。TGA曲线表明,CMSS水凝胶的最大热分解速率高于CMS,这可能是由于CMSS水凝胶中存在交联。CMSS水凝胶在pH 7处的PBS溶液中具有很高的肿胀程度,而酸性培养基的肿胀程度低。关键字:水凝胶,羧甲基淀粉,交联,表征,肿胀
hafsa bahaar,1 S. Giridhar Reddy,2,* B. Siva Kumar,2,* K. Prashanthi 1和H. C. Ananda Murthy 3摘要摘要是开发了一种新的纳米载体,以解决与癌症治疗相关的衰减副作用,特别是用于送达Sorafenib(SF)(SF)。这种纳米载体利用可生物降解的聚合物,通过实现受控药物释放和降低毒性,它采用了有希望的抗癌症治疗方法。纳米载体的设计包括Fe 3 O 4纳米颗粒,藻酸钠,木质磺酸,聚乙烯乙二醇,SF药物和MGAL层的双氢氧化物涂层。使用各种技术(包括FT-IR,TGA和FESEM)对纳米载体进行了广泛的表征。值得注意的是,与其他变化相比,SF的受控释放中,氧化铁纳米颗粒(IONP)纳米载体具有显着优势。纳米载体组件之间的化学相互作用显着促进其增强的稳定性,如热重分析所证明的那样。此外,XRD分析证实了最终样品的结晶性质。FESEM图像提供了纳米载体组合形态的视觉确认。此外,动力学模型还验证了SF从复合藻酸盐基质中持续释放。这些发现共同强调了该纳米载体系统的潜力,作为在癌症治疗中递送SF药物的有效方法,同时最大程度地减少副作用。
近年来,生物医学已广泛地集中在开发具有反应性行为和可自定义特性的生物学用途药物输送系统上。在药物载体中,水凝胶可以是合适的选择。由于它们具有特定的表面和结构,可以选择性地维护和运输药物到操作区域,因此它们以有利的时间范围释放,以提供更高的治疗作用。在这里,我们宣布在高内相乳液(HIPES)中宣布聚(藻酸钠(ALG)和2-羟基乙基甲基丙烯酸酯(HEMA))的共聚合物的合成,以产生高度多孔的水凝胶,以产生高度的多孔水凝胶,这些水凝胶已发育为化学疗法药物额肌蛋白(Dox)。可以随着聚合物合成程序中涉及的变量而改变孔隙率的百分比。发达的珠的特征是通过傅立叶变换红外光谱(FTIR),热重分析(TGA)和扫描电子显微镜(SEM)进行表征。在37和42°C的pH 5.4和7.4中研究了体外释放研究,这表明DOX有效地掺入了多孔水凝胶中,并通过pH调节和溶胀损失过程以控制的方式释放。在合成的聚螺旋结构中存在羟基和羧酸基团,增强了所得水凝胶的pH敏感性和肿胀行为,可以选择为响应肿瘤的酸性释放药物,以应对肿瘤的酸性状况,从而为局部局部和有效的癌症治疗提供了有希望的策略和有效的癌症治疗。
本论文研究了氧化锌(ZnO)对天然聚合物纳米流体的热层特性的影响。重点是与掺入ZnO纳米颗粒的果胶纳米流体。在本实验中,将不同浓度的氧化锌(ZnO)与恒定量的果胶结合在一起,以研究其对最终溶液特性的影响。最初,ZnO和果胶溶液单独制备并进行杂志搅拌和超声处理。实验涉及三种不同的ZnO:0.1 g,0.02 g和0.03 g,而果胶的重量在整个过程中保持在0.05g。在单个制备后,将溶液混合,进一步搅拌并进行超声处理。采用两种分析技术,即扫描电子显微镜(SEM)和热重分析(TGA)来表征样品。sem提供了对表面形态和化学组成的见解,而TGA分析了质量变化而不是温度变化,提供了有关材料特性的宝贵信息。讨论了这些技术在材料表征和分析中的重要性和应用,突出了它们在理解物理和化学现象中的作用。ZnO纳米颗粒的存在增强了果胶纳米流体的热稳定性。接触角度测量以评估纳米流体的亲水性。接触角趋势表明疏水性增加,果胶纳米流体中ZnO的浓度增加。测量接触角支持合成纳米流体的高稳定性。总体而言,这项研究为将ZnO纳米颗粒掺入果胶纳米流体及其对热物理特征的影响提供了宝贵的见解。这些发现有助于开发纳米流体,以用于药物释放和生物医学领域的潜在应用。
摘要 — 本文探讨了防火复合材料的开发,重点关注其在电气系统中的应用。加入阻燃填料的目的是在不损害对功能至关重要的机械和电气性能的情况下提高防火安全性。这项研究首先概述了传统复合材料在确保防火安全方面所面临的挑战,特别是在火灾风险可能造成严重后果的电气环境中。遵守严格的标准和法规需要材料能够承受高温,同时最大限度地减少火焰蔓延和烟雾产生,从而保护设备和人员。为了应对这些挑战,这项研究调查了将阻燃填料整合到复合材料基质中。研究了三水合氧化铝 (ATH)、氢氧化镁 (MH) 和纳米粘土等材料通过吸热分解、燃料稀释和形成保护性炭层等机制提高防火性的能力,这些机制可以延迟点火并减少火焰蔓延。实验程序包括制备具有不同填料浓度和聚合物基质的复合样品,然后进行热分析 (TGA、DSC) 以评估热稳定性和燃烧行为。还评估了抗冲击性、弯曲强度和拉伸强度等机械特性,以确保阻燃填料不会损害结构完整性。结果表明,与未填充的聚合物相比,含有阻燃填料的复合材料表现出优异的耐火性。热重分析表明,分解过程中的起始温度更高,质量损失率降低,表明热稳定性得到改善。锥形量热法测试表明总热量和峰值热量散发率降低,表明可燃性降低,防火性能增强。
在本研究中研究了在自然条件下土壤中生物基塑料材料的降解。三种基于生物的塑料材料,其中含有聚二酰基(PLA),含有聚苯二甲酸苯甲酸苯甲酸苯甲酸苯甲酸苯甲酸苯甲酸酯(PLA_1),基于PLA的聚酯混合物与矿物质纤维(PLA_2),以及与矿物质的矿物质(pbs_1)进行了矿物(pbs_1),对土壤进行了跨度的研究。实验是在冬季和夏季的平均年温度为9.4°C的气候下进行的一年。通过宏观和微观观察,体重减轻,热重分析和拉伸测试评估材料的降解。宏观观察表明,在降解12个月后,PBS_1可见膜表面的颜色变化。使用显微镜检查观察到12个月后表面样品PLA_1和PBS_1的侵蚀。降解一年后,样品的质量损失PLA_1和PLA_2低于0.6%。此外,对于PBS_1样本,质量损失等于4.3%。基于获得的质量损失结果,提出了降解动力学的描述,显示了随着时间的推移,测试聚合物的厚度的变化。样品的热稳定性PLA_1和PLA_2在降解过程中降低了16.1和2.6°C,分别是分解的,而对于PBS_1,降解过程降低了1.7°C。在12个月降解后休息时的拉伸强度分别降低了PLA_1和PLA_2分别降低27.3和5.8%,与未暴露的样品相比,样本PBS_1的降解量和样品PBS_1的降解强度分别降低了27.3%。