hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
为了模拟原位 Z TH,ja 提取,对安装在 PM 上的其中一个设备采用了“模拟实验”策略。该过程如下:•首先,通过 COMSOL Multiphysics 环境中的详细纯热 3-D FEM 模拟获得设备的参考 Z TH,ja [24],其中重现了 PM 的精确复制品(图 3)。边界条件通过施加于厚铜底板底面的传热系数 h =2×10 3 W/m 2 K 来解释,这描述了与高效散热器的接触 [25]。•获得的参考 Z TH,ja 用于构建具有 Foster 拓扑的 SPICE 兼容热反馈网络 (TFN) [26];然后将 TFN 耦合到 VDMOS 晶体管的电气模型,该晶体管的温度敏感参数可以在模拟运行期间发生变化。电气模型根据实验数据 [27] 进行了校准,并在 [28] 中进行了详细描述。• 使用 OrCAD Capture 软件包 [29] 对 ET 模型进行了瞬态模拟,以模拟第 II.B 节中介绍的实验程序来提取 z ja 。• 通过在 COMSOL 中模拟 300 K 等温背面的裸片器件来确定 Z jc 。• 然后进行反归一化过程和时域转换以获得热阻抗 Z TH,ja 。• 最后比较了参考值和提取的 Z TH,ja 。
本文描述了研究结果,说明了确定结温过高的方法和选择用于测量功率 MOS 晶体管热阻过程中的近似测温特性函数对测量结果的影响。研究涉及使用间接电学方法进行的测量。介绍了三种确定晶体管结温过高的方法,分别使用近似测温特性的线性函数和非线性函数。比较了使用每种方法获得的热阻测量结果。还分析了因选择所考虑的方法而导致的测量误差。
摘要:本文回顾了激光光热幻影技术在传感和测量现代电子设备中接头层热阻方面的最新应用。本文介绍了一种基于在连接固体之间形成薄中间层的界面热阻的简单理论模型。实验表明,焊料层的热性能不能简单地基于焊料成分热性能的平均值来评估。本文介绍了一种用于测量焊接和胶接接头热参数的激光热波方法。所开发的理论模型通过将理论结果与激光束偏转法获得的实验数据进行拟合,可以定量估计接头的局部热导率及其热阻。研究了含铅和无铅焊料制成的接头。焊料层热性能的异常分布可以用能量色散 X 射线光谱检测到的各种原子的扩散来解释。激光束偏转法可以揭示表面预处理质量对界面热阻的强烈影响。
在过去的十年中,拉曼光谱已被证明是一种强大的光谱方法,有助于了解纳米级复杂而迷人的能量传输世界。人们开发了各种基于拉曼的方法来测量二维材料和其他纳米级结构的热性能。光热拉曼法常用于确定原子级薄材料(如石墨烯和过渡金属二硫属化合物 (TMD))的界面热阻 (R ″ tc ) 和热导率 (k)。[1–4] 该技术同时使用激光加热样品和拉曼信号表征。温度相关的拉曼信号和 3D 热传导模型用于提取热性能测量值。通过焦耳加热的拉曼测温法同样可以探测界面能量传输和热导率;通过用激光加热代替电流加热源,可以使用物理建模和温度相关的拉曼信号来确定 R ″ tc 。 [5,6] 最近,人们设计了另一种综合光热拉曼方法,使用连续波和脉冲激光来测量二维材料的热性能。[7] 该方法通过比较一系列激光光斑尺寸和脉冲持续时间的不同拉曼温度响应来测量单层和多层石墨烯的 k。此外,双激光拉曼测温法和双波长闪光拉曼映射法分别用于测量二维材料和纳米线的热导率。[8,9]
摘要 — Ga 2 O 3 的低热导率可以说是 Ga 2 O 3 功率和射频器件最严重的问题。尽管进行了许多模拟研究,但是还没有关于大面积封装 Ga 2 O 3 器件热阻的实验报告。这项工作通过展示 15-A 双面封装 Ga 2 O 3 肖特基势垒二极管 (SBD) 并测量其在底部和结侧冷却配置下的结到外壳热阻 (R θ JC) 来填补这一空白。R θ JC 特性基于瞬态双界面法,即 JEDEC 51-14 标准。结冷和底部冷却的 Ga 2 O 3 SBD 的 R θ JC 分别为 0.5 K/W 和 1.43 K/W,前者的 R θ JC 低于同等额定值的商用 SiC SBD。这种低 R θ JC 归因于直接从肖特基结而不是通过 Ga 2 O 3 芯片进行散热。R θ JC 低于商用 SiC 器件,证明了 Ga 2 O 3 器件在高功率应用中的可行性,并表明了适当封装对其热管理的重要性。索引术语 — 超宽带隙、氧化镓、封装、肖特基势垒二极管、热阻。
摘要 温度对锂离子电池的性能、寿命和安全性有至关重要的影响。因此,了解单个电池单元和电池组内的热量产生和耗散对于制定适当的热管理策略至关重要。关键挑战之一是电池单元的界面传热难以量化。采用稳态绝对法和瞬态激光闪光扩散率法分别测量电池层堆栈和单个电池层的热导率。结果表明,闪光扩散率法在横向和平面内方向均具有更高的热导率。差异主要是由界面热阻引起的,因此可以通过稳态和瞬态测量来估算。为了研究界面热传输对单个电池级别以外的影响,使用了多物理场电池模型。该模型建立在电池组的多尺度多领域建模框架之上,该框架考虑了多种物理现象之间的相互作用。通过数值实验量化了使用热管理材料的电池模块的好处。在热失控事件中,发现界面热阻可以通过显著减少电池之间的热传递来缓解电池模块中的热失控。关键词:锂离子电池、热管理、界面热阻、多物理场建模术语 T 温度 k 热导率 α 热扩散率 ρ 密度 C p 热容量 li 厚度
[1] 赵学历 , 金尚忠 , 王乐 , 等 . 基于结构函数的 LED 热特 性测试方法 [J]. 光电工程 , 2011, 38(9): 115-118. [2] 张立 , 汪新刚 , 崔福利 . 使用 T3Ster 对宇航电子元器件 内部热特性的测量 [J]. 空间电子技术 , 2011(2): 59-64. [3] MEY G, VERMEERSCH B, BANASZCYK J, et al. Thermal Impedances of Thin Plates[J]. International Journal of Heat and Mass Transfer, 2007, 50: 4457-4460. [4] VASILIS C, PANAGIOTIS C, IONNANIS P, et al. Dy- namic Thermal Analysis of Underground Medium Power Cables Using Thermal Impedance, Time Constant Distri- bution and Structure Function[J]. Applied Thermal Engi- neering, 2013, 60: 256-260. [5] MARCIN J, JEDRZEJ B, BJORN V, et al. Generation of Reduced Dynamic Thermal Models of Electronic Systems from Time Constant Spectra of Transient Temperature Responses[J] Microelectronics Reliability, 2011, 51: 1351-1355. [6] MARCIN J, ZOLTAN S, ANDRZEJ N. Impact of
选择 L 16 正交阵列 1 作为设计工具,用于评估 k 因子测试板系统中所有已确定的主要因素及其预期相互作用的影响。由于本研究的重点是推导用于估计目的的数学方程,因此正确定义实验布局以捕获所有变异源非常重要;即,当未解决的变异性最小化时,方程的准确性最高。正确定义实验后,根据矩阵准备适当的模型,并通过有限元分析热求解器 (ABAQUS) 进行处理。FEA 软件返回的典型数据集显示在表 2 的最右列中。进行统计分析,可以从完成的数据集中得出正交多项式方程。