神经网络的硬件实现是利用神经形态数据处理优势和利用与此类结构相关的固有并行性的里程碑。在这种情况下,具有模拟功能的忆阻设备被称为人工神经网络硬件实现的有前途的构建块。作为传统交叉架构的替代方案,在传统交叉架构中,忆阻设备以自上而下的方式以网格状方式组织,神经形态数据处理和计算能力已在根据生物神经网络中发现的自组织相似性原理实现的网络中得到探索。在这里,我们在图论的理论框架内探索自组织忆阻纳米线 (NW) 网络的结构和功能连接。虽然图度量揭示了图论方法与几何考虑之间的联系,但结果表明,网络结构与其传输信息能力之间的相互作用与与渗透理论一致的相变过程有关。此外,还引入了忆阻距离的概念来研究激活模式和以忆阻图表示的网络信息流的动态演变。与实验结果一致,新出现的短期动力学揭示了具有增强传输特性的自选择通路的形成,这些通路连接受刺激区域并调节信息流的流通。网络处理时空输入信号的能力可用于在忆阻图中实现非常规计算范式,这些范式充分利用了生物系统中结构和功能之间的固有关系。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要:神经形态计算已成为克服传统数字处理器冯诺依曼架构局限性的最有前途的范例之一。神经形态计算的目的是忠实地再现人脑中的计算过程,从而与其出色的能效和紧凑性相媲美。然而,要实现这一目标,必须面对一些重大挑战。由于大脑通过超低功耗的高密度神经网络处理信息,因此必须开发结合高可扩展性、低功耗操作和先进计算功能的新型设备概念。本文概述了神经形态计算中最有前途的设备概念,包括互补金属氧化物半导体 (CMOS) 和忆阻技术。首先,将讨论基于 CMOS 的浮栅存储器在人工神经网络中的物理和操作。然后,将回顾和讨论几种忆阻概念在深度神经网络和脉冲神经网络架构中的应用。最后,将讨论神经形态计算的主要技术挑战和前景。
神经网络的硬件实现是利用神经形态数据处理优势和利用与此类结构相关的固有并行性的里程碑。在这种情况下,具有模拟功能的忆阻设备被称为人工神经网络硬件实现的有前途的构建块。作为传统交叉架构的替代方案,在传统交叉架构中,忆阻设备以自上而下的方式以网格状方式组织,神经形态数据处理和计算能力已在根据生物神经网络中发现的自组织相似性原理实现的网络中得到探索。在这里,我们在图论的理论框架内探索自组织忆阻纳米线 (NW) 网络的结构和功能连接。虽然图度量揭示了图论方法与几何考虑之间的联系,但结果表明,网络结构与其传输信息能力之间的相互作用与与渗透理论一致的相变过程有关。此外,还引入了忆阻距离的概念来研究激活模式和以忆阻图表示的网络信息流的动态演变。与实验结果一致,新出现的短期动力学揭示了具有增强传输特性的自选择通路的形成,这些通路连接受刺激区域并调节信息流的流通。网络处理时空输入信号的能力可用于在忆阻图中实现非常规计算范式,这些范式充分利用了生物系统中结构和功能之间的固有关系。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
大脑功能依赖于脉冲神经元回路,其中突触在融合传输与记忆存储和处理方面发挥着关键作用。电子技术在模拟神经元和突触方面取得了重要进展,而将大脑和受大脑启发的设备连接起来的脑机接口概念也开始实现。我们报告了大脑和硅脉冲神经元之间的忆阻连接,这些连接模拟了真实突触的传输和可塑性。与金属薄膜氧化钛微电极配对的忆阻器将硅神经元连接到大鼠海马的神经元。忆阻可塑性解释了连接强度的调节,而传输则由通过薄膜氧化物的加权刺激介导,从而产生类似于兴奋性突触后电位的反应。反向大脑到硅的连接是通过微电极-忆阻器对建立的。在此基础上,我们展示了一个三神经元脑硅网络,其中忆阻突触经历由神经元放电率驱动的长期增强或抑制。
通过使用散热器和有效的热界面材料来最大限度地降低封装中的热阻对于 LED 的长而可靠的使用寿命非常重要。Momentive 提供一系列室温/低温固化 TIM 和导热油脂,用作铝或 FR-4 底座和散热器之间的热界面。这些可修复材料可润湿热表面,可用于减少粘合线,并且由于它们是液体分配的,因此仅允许使用必要的量,从而为材料成本和生产率效益创造了机会。
1-D PCM 棒的横截面积,[m 2 ] 比热,[J kgK ⁄ ] 运行成本,[$ yr ⁄ ] 电价,[$ kWhr ⁄ ] 管材成本,[$ kg ⁄ ] PCM 材料成本,[$ kg ⁄ ] 管内传热系数,[W m 2 K ⁄ ] 总时间步数 电导率,[W mK ⁄ ] 管总长度,[m ] 平准化能源成本,[$ MWh ⁄ ] PCM 潜能,[kJ kg ⁄ ] 径向网格数 管长网格数 努塞尔特数 普朗特数 传热速率,[W] 传热速率,[W] HTF 总质量流速,[kg s ⁄ ] 环内半径,[m] 环状几何中的移动凝固前沿,[m]环形圆柱体 PCM 的热阻,[ m ] 圆柱体 PCM 内的热阻,[ KW ⁄ ] 导热流体内的热阻,[ KW ⁄ ] 雷诺数 温度,[ ℃ ] 边界冷却温度,[ ℃ ] 相变材料熔化温度,[ ℃ ] 管与圆柱体 PCM 之间的界面温度,[ ℃ ] 管内导热流体的速度,[ ms ⁄ ] 管壁厚度,[ mm ] 壳体厚度,[ mm ] 一维 PCM 棒的长度,[ m ] 每天运行小时数,[ hr ] 凝固时间,[ hr ] 移动凝固前沿,[ m ] 设备总寿命,[ yr ] 环形圆柱体 PCM 的轴长,[ m ] 两个坐标系之间的凝固前沿比率 密度,[ kg m 3 ⁄ ] 粘度,[ Pa ∙s ] 潜能储存系统的有效性矩形几何结构显热能分数因子 圆柱形几何结构显热能分数因子 差值或增量步长 泵效率
1 线性稳压器的电位器模型 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 摘自 TPS763xx 数据表的功率耗散表(2000 年 4 月) 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 5 引线 SOT223 的热阻与 PCB 面积关系 7 . . . . . . . . . . . . . . . . . . . 5 封装的热和面积比较 8 . . . . . . . . . . . . . . . . . . . . 6 稳态热等效模型 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 功率耗散表 摘自 TPS76318 数据表 (2001 年 5 月) 17 . . . . . . . . . . . . . . . . . . 10 摘自 REG101 数据表 (2001 年 7 月) 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
摘要:本文介绍了一种将超薄硅芯片嵌入机械柔性阻焊层中并通过喷墨打印实现电接触的方法。将感光阻焊层通过保形喷涂涂覆到具有菊花链布局的环氧粘合超薄芯片上。使用紫外线直接曝光的光刻技术打开接触垫。实现了直径为 90 µ m 和边长为 130 µ m 的圆形和矩形开口。喷墨打印含有纳米银和金的商用油墨,以在菊花链结构之间形成导电轨道。应用了不同数量的油墨层。通过针探测来表征轨道电阻。银油墨仅在多层和 90 µ m 开口时才显示低电阻,而金油墨在至少两层印刷层时表现出个位数 Ω 范围内的低电阻。
中红外仪器 (MIRI) 由英国牵头的十个欧洲成员国与 NASA 喷气推进实验室合作设计、建造和测试。欧洲贡献由科学与技术设施委员会 (STFC) 的 Gillian Wright 博士牵头,光学相机和热保护的大部分设计由 STFC 科学家和工程师完成。整个 MIRI 仪器随后在 STFC 卢瑟福阿普尔顿实验室的热真空室和振动测试设施中进行测试,以确保其在发射后完好无损并在恶劣的太空环境中完美运行。
结果和讨论微生物测试的完整和截短的140°C灭菌周期的微生物测试结果如表1所示。在每种情况下,在140°C的干热周期中的任何一个中,来自不锈钢载体的任何样品中均未发现生长,证明了全部消除。在不同日期,所有截短的运行均显示结果的一致性,增长为零。阴性对照没有显示生长(未显示结果),表明技术人员没有样品污染。阳性对照与测试样品相同,除了未放入孵化器中。由于所有灭菌周期都能够消除所有微生物,包括用于干热量灭菌的规定生物学指标孢子,因此恢复程序仅用于阳性对照。表2中为323 L模型提供的结果清楚地表明,恢复的所有正面对照至少为10 6 CFU/载体,因此成功满足了所有接受标准。表3中给出的232升模型中所示的结果表明,最重要的生物学指标(抗抗热孢子孢子芽孢杆菌)最少回收了10 6 CFU/载体。这些结果证明,140°C的灭菌程序至少达到6-7 log 10减少抗脂肪芽孢杆菌的抗热孢子,符合EUP和USP的干热量灭菌所需的灭菌标准。