设备,采用非平衡分子动力学方法来研究工作温度,界面大小,缺陷密度和缺陷类型对氮化碳/石墨烯/钻石异种结构的界面导热率的影响。此外,计算各种条件下的声子状态密度和声子参与率,以分析界面热传导机制。结果表明,界面热电导随温度升高而增加,突出了异质性固有的自我调节热量耗散能力。随着温度从100升的增加,单层石墨烯结构的界面热电导增加了2.1倍。这归因于随着温度升高的重叠因子的增加,从而增强了界面之间的声子耦合,从而导致界面导热率增加。此外,在研究中发现,增加氮化岩和石墨烯的层数会导致界面热电导量减少。当氮化壳层的数量从10增加到26时,界面的导热率降低了75%。随着层数增加而减小的重叠因子归因于接口之间的声子振动的匹配减少,从而导致较低的热传递效率。同样,当石墨烯层的数量从1增加到5时,界面热电导率降低了74%。石墨烯层的增加导致低频声子减少,从而降低了界面的导热率。此外,多层石墨烯可增强声子定位,加剧了界面导热的降低。发现引入四种类型的空缺缺陷会影响界面的导电电导。钻石碳原子缺陷导致其界面导热率增加,而镀凝剂,氮和石墨烯碳原子的缺陷导致其界面导热降低。随着缺陷浓度从0增加到10%,由于缺陷散射,钻石碳原子缺陷增加了界面热电导率,增加了40%,这增加了低频声子模式的数量,并扩大了界面热传递的通道,从而提高了界面热电导率。石墨烯中的缺陷加强了石墨烯声子定位的程度,因此导致界面导热率降低。胆汁和氮缺陷都加强了氮化炮的声子定位,阻碍了声子传输通道。此外,与氮缺陷相比,甘露缺陷会引起更严重的声子定位,因此导致界面的界面热电导率较低。这项研究提供了制造高度可靠的氮化炮设备以及广泛使用氮化壳异质结构的参考。
n-agp的场分布图(| e norm |); (b)AGP的电场分布图(| e Norm |)。
波纹现象和曲率效应可提高稳定性并产生各向异性,以及增强的机械、光学和电子响应。双层石墨烯中的霍尔效应[1]和 MoS 2 中形成的人造原子晶体[2]就是很好的例子,它们表明电导率与偏离完美平坦结构之间存在很强的相关性。最近,铁电畴壁作为一种全新类型的二维系统出现,其形貌和电响应之间具有特别强的相关性。[3–6] 畴壁表现出 1-10 Å 数量级的有限厚度,因此通常被称为准二维系统。除了有限的厚度和与波纹二维材料类似之外,这些壁并不是严格意义上的二维,因为它们不会形成完全平坦的结构。弯曲和曲率自然发生,以尽量减少静电杂散场,确保机械兼容性,或由于导致畴壁粗糙的点缺陷。[7–10] 重要的是,相对于主体材料电极化的任何方向变化都会直接导致电荷状态的改变,从而导致局部载流子
石墨烯的生产是在金属基底上用化学气相沉积 (CVD) 方法进行的,因为该方法可重复、可扩展,且能获得具有大畴尺寸的高质量层。到目前为止,各种过渡金属已作为基底进行了测试 [4–10],其中铜箔由于碳溶解度低,已被证明是控制单层和双层生长的合适基底。[11–14] 通常,铜箔上石墨烯畴的成核以随机取向发生,从而形成多晶单层石墨烯片 [15] 甚至扭曲的双层石墨烯。[16] 相邻畴合并后会引入晶界,从而限制载流子迁移率。[17] 使用六边形 Cu(111) 表面作为基底,结果表明石墨烯成核发生在与基底晶格对准的位置,从而有效减少晶界。 [18,19] 在实际应用中,需要将石墨烯从金属基底转移到非金属目标基底(如 SiO 2 、SiC)。在许多情况下,转移层的质量不如原生石墨烯。众所周知,基底的选择可能会影响石墨烯的特性。[20–22] 一方面,Kraus 等人早些时候提出,铜基底的刻面可能会压印在石墨烯上,即使在平坦的基底上,转移后也会导致层起波纹。[23] 另一方面,研究表明,在 SiO 2 上转移的单晶石墨烯中的纳米波纹会降低电子迁移率。[24] 此外,在 Bernal 堆叠双层石墨烯中,在不同基底上都观察到了应变诱导的位错线[25–27],这可能会限制载流子迁移率。即使在目标基底上转移后,这些位错也可能存在。了解这些位错的形成和生长衬底的影响将为设计双层石墨烯和其他堆叠二维材料的特性开辟一条道路。我们利用低能电子显微镜 (LEEM) 和衍射 (LEED) 研究了在 Cu(111) 衬底上以及转移到外延缓冲层后 CVD 生长的石墨烯的厚度和晶体度。我们发现,在石墨烯生长过程中,衬底表面会重新构建为小平面,即使在单层石墨烯中也会留下波纹结构。LEEM 暗场测量揭示了衬底小平面在双层(和三层)石墨烯中堆叠域形成过程中的作用,这些堆叠域在转移过程中得以保留。
1 西安交通大学微电子学院和材料力学行为国家重点实验室,西安 710049,中国 2 沈阳材料科学国家实验室,中国科学院金属研究所,沈阳市文化路 72 号,110016,中国 3 西安交通大学材料科学与工程学院材料力学行为国家重点实验室,西安 710049,中国 4 西安交通大学电子与信息工程学院电子材料研究实验室,西安 710049,中国 5 Ernst Ruska 电子显微镜和光谱中心,Jᅵlich 研究中心,D-52425 Jᅵlich,德国 6 阿肯色大学物理系和纳米科学与工程研究所,阿肯色州费耶特维尔 72701,美国(日期:2020 年 2 月 9 日)
,6$䄢⪌ 运畴 ⼽ ِٚؠׂٜTPVKJLLPմ٭ًشع榫䍚睳浓تةմ⼽
别是石墨烯的 D 、 G 和 D+G( 也称 G') 峰 [ 19 ] ,这表 明两种样品都生成了高质量的石墨烯。其中 D 峰 是由于芳香环中 sp 2 碳网络扭曲使得碳原子发生 对称伸缩振动引起的 [ 20 ] ,用于衡量材料结构的无 序度,它的出现表明石墨烯的边缘较多或者含有 缺陷,这与 SEM 观察到的结果一致; G 峰是由 sp 2 碳原子间的拉伸振动引起的 [ 21 ] ; G' 峰也被称 为 2 D 峰,是双声子共振二阶拉曼峰,其强度与 石墨烯层数相关 [ 22 - 24 ] 。与 LIG 拉曼曲线相比, MnO 2 / LIG 在 472.6 cm −1 波段较强的峰值,对应于 Mn − O 的伸缩振动峰,证实了 MnO 2 的晶体结构。 XRD 测试结果表明, MnO 2 /LIG 在 2 θ =18.002° 、 28.268° 、 37.545° 、 49.954° 和 60.244° 处的特征峰分别对应 α - MnO 2 的 (200) 、 (310) 、 (211) 、 (411) 和 (521) 晶面 ( 图 4 b PDF#440141) , α -MnO 2 为隧道结构,可容 纳溶液中的阳离子 ( 如 Zn 2+ 、 Li + 、 Mg 2+ 、 Na + ) [ 21 ] 。 25.9° 和 44.8° 处的峰为 LIG 中 C 的特征衍射峰。
免责声明 本信息是根据美国政府机构赞助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。