Supermicro B13DET 支持双第四代 Intel® Xeon® 可扩展处理器(插槽 E1 LGA 4677-1),具有三个 UPI(最高 16GT/s)和高达 350W 的 TDP(热设计功率)。B13DET 采用 Intel C741 芯片组构建,支持 4TB(最高)3DS RDIMM/RDIMM DDR5 ECC 内存,在 16 个 DIMM 插槽中速度高达 4800MT/s(见下文注释 1)。该主板具有出色的 I/O 可扩展性和灵活性,包括两个支持 SATA 6G/NVMe 的 HDD 连接器、一个支持 PCIe 5.0 的 M.2 连接器、两个支持子转接卡的夹层插槽、一个支持 25GbE 以太网 LAN 的中板,以及一个来自 PCH 的用于支持 SATA 6.0 的附加 SATA 连接器。它还提供最先进的数据保护,支持硬件 RoT(信任根)和 TPM(可信平台模块)(下面的注释 2)。B13DET 针对具有高密度和高速输入/输出能力的 4U/8U SuperBlade 系统进行了优化。它是高性能计算 (HPC)、云计算、财务建模、企业应用程序、具有数据密度应用程序的科学和工程计算的理想选择。请注意,此主板仅供专业技术人员安装和维修。有关处理器/内存更新,请参阅我们的网站 http://www.supermicro.com/products/。
摘要:扭曲的石墨烯单和双层系统的超晶格产生了按需多体状态,例如Mott绝缘子和非常规的超导体。这些现象归因于平坦带和强库仑相互作用的组合。然而,缺乏全面的理解,因为当电场应用以改变电子填充时,低能带的结构会发生强烈的变化。在这里,我们通过应用微型注重角度分辨的光发射光谱光谱光谱光谱光谱传递到位于原位门配,我们可以直接访问扭曲的双层石墨烯(TBG)和扭曲的双重双层石墨烯(TDBG)的填充相关的低能带。我们对这两个系统的发现处于鲜明的对比:可以在简单模型中描述掺杂的TBG的掺杂依赖性分散体,将依赖于填充的刚性带转移与多体相关的带宽变化相结合。在TDBG中,我们发现了低能带的复杂行为,结合了非单调带宽变化和可调间隙开口,这取决于栅极诱导的位移场。我们的工作确立了在扭曲的石墨烯超晶格中低能电子状态的电场可调节性的程度,并且可以支持对所得现象的理论理解。关键字:扭曲的双层石墨烯,Moire ́超级晶格,扁平带,微摩尔,原位门控,带宽重归于
石墨烯,在二维六边形晶格中排列的碳原子,自大约二十年前的实验发现以来,就引发了巨大的研究和应用兴趣。除了超薄外,这种神奇的材料还表现出许多有趣的特性,包括高电导率和导热率,高弹性,高机械强度等。在各种应用中,一个有前途的领域是基于石墨烯的电流设备,例如光电探测器,光电二极管和超材料。额外的石墨烯特征是可以通过通过电控改变其费米能量来积极控制其光学响应。在此模型中,我们首先演示了如何使用Kubo公式计算石墨烯的光电性。然后使用计算的电导率来对基于石墨烯的THZ超材料吸收器进行建模(图1)。由于石墨烯的原子厚度,其明确的体积建模在计算上是昂贵的。我们表明,可以使用过渡边界条件(TBC)将其视为2D表面,可以轻松避免这种情况。
TEAl : 三乙基铝 ( C 2 H5 ) 3 Al TMGa : 三甲基镓 ( CH 3 ) 3 Ga TMIn : 三甲基铟 ( CH3 ) 3 In DETe : 二乙基碲 ( C 2 H5 ) 2 Te DEZn : 二乙基锌 ( C 2 H5 ) 2 Zn CP 2 Mg : 双(环戊二烯基)镁
扭曲的双层石墨烯显示出许多引人入胜的特性,可以通过改变其层之间的扭曲角来调节。的确,电子平面波段和相应的强电子定位是在魔法角度附近获得的(〜1.1°),导致观察到几种强相关的电子现象[1]。随后,最近在其他多层(即两层)石墨烯系统中进行了扭曲效应,例如,请参见参考文献。[2]。除了与双层超晶格共有的共同特性外,由于存在大量层以及各种堆叠配置,因此扭曲的多层石墨烯系统还具有不同的性质。显着的特征包括超Heavy和超偏移主义的迪拉克·费米斯的共存和相互作用[3],局部偏置电子状态的共存[4],以及在很大程度上可以通过外部磁场[5] [5]。在本演讲中,我们将讨论通过原子计算证明的扭曲多层石墨烯的这些显着特性[6]。将强调垂直电场的影响(如图1所示)。根据其可调电子性能,还提供了相应的光谱(如图2所示)。
摘要作为现代社会中通信,信息和感知的无线解决方案,电磁波(EMW)为人们日常生活质量的提高做出了巨大贡献。同时,EMWS产生电磁污染,电磁干扰(EMI)和射频(RF)信号泄漏的问题。这些情况导致对有效的EMI屏蔽材料的需求很高。要设计EMI屏蔽产品,必须在电磁屏蔽效率,屏蔽材料的厚度,耐用性,机械强度,体积和重量减小以及弹性之间实现折衷。由于其阻断EMW,柔韧性,轻质和化学电阻率的效果,石墨烯已被确定为有效的候选材料,以进行有效的EMI屏蔽。在此,我们审查了研究各种基于石墨烯的复合材料作为潜在的EMI屏蔽材料的研究,重点是基于石墨烯和银纳米线的复合材料,原因是它们的高EMI屏蔽效率,低产量和有利的机械性能。
1。MariaGrazia Betti,Dario Marchiani,Andrea Tonelli,Marco Sbroscia,Elena Blundo,Marta de Luca,Antonio Polimeni,Riccardo Frisenda,Carlo Mariani,Samuel Jeong,Yoshikazu Ito,Nicola Cavani,Roberto Berik berne no no no hern serne Molinari,Valentina de Renzi,Deborah Prezzi,“介电响应和氢化石墨烯的激发”,碳趋势,100274,(2023),10.1016/j.cartre.2023.100274 2 O L. Morales和Carlos A. Duque,“斐波那契石墨烯超晶格的磁光特性”,Eur。物理。 J. B, 93, 47, (2020), 10.1140/epjb/e2020-100583-x 3. Michael Hernandez、Alejandro Cabo Montes de Oca、Maurice Oliva Leyva 和 Gerardo Naumis,“水如何使石墨烯具有金属性”,Physics Letters A, 383, 29 (2019), 10.1016/j.physleta.2019.125904 4. M. de Dios-Leyva、MA Hernández-Bertrán、AL Morales 和 CA Duque,“准周期石墨烯超晶格:朗道能级谱的自相似性”,Solid State Communications, 284–286, 93–95 (2018), 10.1016/j.ssc.2018.09.011 5. M. de Dios-Leyva、MA Hernández-Bertrán、AL Morales、CA Duque 和 Huynh Vinh Phuc,“周期性石墨烯超晶格中的光吸收:垂直施加磁场和温度效应”,Ann.物理。 (柏林)2018,1700414(2018),10.1002/andp.201700414 6. Melquiades de Dios-Leyva、Michael Alejandro Hernández-Bertrán、Álvaro Luis Morales、Carlos Alberto Duque,“石墨烯超晶格中的磁光吸收:狄拉克点效应”,Phys. Status Solidi RRL 2017, 1700347, (2017), 10.1002/pssr.201700347 7. CA Duque、MA Hernández-Bertrán、AL Morales 和 M. de Dios-Leyva,“探索石墨烯超晶格:磁光特性,”J. Appl.物理。 121, 074301 (2017), 10.1063/1.4976680 8. MA Hernández-Bertrán、CA Duque 和 M. de Dios-Leyva,“石墨烯超晶格:有限尺寸对态密度和电导的影响”,Phys. Status Solidi B, 254, 4 (2017), 10.1002/pssb.201600313 9. MA Hernández-Bertrán 和 L. Diago-Cisneros,“层状半导体异质结构中空穴的准键态:寿命和特征能量”,Rev. Cuba Fis。 32, 20 (2015)。
摘要:本研究的重点是三个参数之间的相关性:(1)石墨粒径,(2)石墨与氧化剂的比率(KMNO 4),以及(3)石墨与酸(H 2 SO 4和H 3 PO 4)的比率(H 2 SO 4和H 3 PO 4),具有氧化物氧化物的性质,结构和特性(GO)。相关性是一个挑战,因为由于系统粘度的变化,这三个参数几乎无法彼此分开。石墨颗粒越大,GO的粘度越高。将石墨与KMNO 4的比率从1:4到1:6降低,通常会导致更高的氧化程度和更高的反应产率。但是,差异很小。除最小的颗粒以外,将石墨与酸 - 酸体积比从1 g/60 mL增加到1 g/80 ml,降低了氧化程度,并稍微降低了反应产率。然而,反应的产率主要取决于水的纯化程度,而不是反应条件。GO热分解的较大差异主要是由于块状粒径,而其他参数则较小。
激光。”激光物理字母9.1(2011):54。42。Sun,Zhipei等。“石墨烯模式锁定的超快激光器。”ACS Nano 4.2(2010):803-810。43。Lin,Jian等。 “来自商业聚合物的激光诱导的多孔石墨烯膜。” 自然Lin,Jian等。“来自商业聚合物的激光诱导的多孔石墨烯膜。”自然