作者:R Blundell · 2024 — 通过结合石墨烯和硼烯,可以增强石墨的药物输送能力,从而实现更有效、更有针对性的治疗方法。
审查了15次第3期试验,1阶段试验和1个指南。根据诊断,比较器和包括病原体的临床试验而变化。cefiderocol与咪毕/西兰图蛋白相比,头孢菌素是对复杂的尿路感染(CUTI)的治疗,而在事后分析中是出色的。非效率是由比较器上的微生物消除改善(73%vs 56%)驱动的,尽管临床反应在数值上也更高(90%vs 87%)。该试验不包括抗性生物。在接受医院肺炎的治疗中,与高剂量的延长输注MeropeNem相比,在第14天,头孢菌素在全因死亡率中是非内部死亡率(12.4%vs 11.6%)。约有30%的分离株产生的ESBL,并且在Cefiderocol和MeropeNem之间相似。发现19%的患者具有抗碳青霉烯的生物体,除了在非常高的MeropeNem MICS(在Meropenem ARM中增加)外,死亡率没有显着差异,这表明Cefiderocol可能有助于治疗碳青霉烯类病原体,但该亚基限制为小数量。在评估患有严重碳青霉感染感染的患者的描述性试验中,与最佳可用疗法相比,患者具有相似的临床和微生物学功效,但是在研究结束时,全因死亡率较高,在Cefiderocol Arm中(34%vs 18%),主要由AcineTobacter Spp驱动。约有20%的病原体是头孢菌素抗性/ESBL阳性。对于医院肺炎,全因死亡率为28天,不属于标准剂量MeropeNem(9.6%vs 8.3%)。一起,这些试验表明,在治疗非耐药性尿液和肺部源感染方面,与碳青霉烯无端的头孢曲松相比,与治疗耐碳青霉烯抗性病原体相比,可能与较差的结果有关。头孢烷/avibactam用于治疗CUTI,头孢烷/Avibactam遇到非劣质性,与多甲基(70.2%vs 66.2%)相比,第5天症状的患者的百分比更高,而微生物消除的症状优势(70.2%vs 66.2%),而高高的百分比却高。ESBL和AMPC在30%的分离株中普遍存在,但在试验中排除了抗碳青霉烯的病原体。每种病原体的终点是相似的,通常在数值上有利于美洛培植物。与甲硝唑结合用于治疗复杂的腹腔内感染(CIAI)时,头孢济胺/avibactam在治疗测试时不受Meropenem的治疗(81.6%vs 85.1%)。这些试验表明,与碳纤维烯相比,在CUTI,医院肺炎和CIAI中治疗头孢心去的病原体相比,头孢烷/avibactam与碳纤维烯相比是非矿体。
作者:Kazumi Fukushima,Keito Obata,Soichiro Yamane,Yajian Hu,Yongkai Li,Yugui Yao,Zhiwei Wang,
名启博:プラマ・核融合学志92,396(2016)。[4 W.H.fietz and al。,IEEE Trans。苹果。超级。26,4800705(2016)。 [5]P。Bruzzone和Al。 ,ncle。 Fuance 58,103001(2018)。 l。米切尔和阿尔。 ,超级条件。 SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。26,4800705(2016)。[5]P。Bruzzone和Al。,ncle。Fuance 58,103001(2018)。l。米切尔和阿尔。,超级条件。SCI。 树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。SCI。树。 34,103001(2021)。 !t。安多和al。 ,技术完整。 1,791(1998)。 Lage F. Dahlgren和Al。 ,Eng已满。 甲板。 167,139(2006)。 ]H。H. Hashizume和Al。 ,Eng已满。 甲板。 63,449(2002)。 [10! Y. Ogawa和Al。 ,J。 填充完整的等离子体。 79,643(2003)。 <+11 Z. Yoshida和Al。 ,Ressing主题等离子体。 1,8(2006)。 [12 Y. Ogawa和Al。 ,Ressing主题等离子体。 9,140,014(2014)。 13 V. Corat和Al。 ,Eng已满。 甲板。 136,1597(2018)。 14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。树。34,103001(2021)。!t。安多和al。,技术完整。1,791(1998)。Lage F. Dahlgren和Al。,Eng已满。甲板。167,139(2006)。]H。H. Hashizume和Al。,Eng已满。甲板。63,449(2002)。[10! Y. Ogawa和Al。,J。填充完整的等离子体。79,643(2003)。<+11 Z. Yoshida和Al。,Ressing主题等离子体。1,8(2006)。[12 Y. Ogawa和Al。,Ressing主题等离子体。9,140,014(2014)。13 V. Corat和Al。,Eng已满。甲板。136,1597(2018)。14 A. Sagara和Al。 ,Eng已满。 甲板。 89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。14 A. Sagara和Al。,Eng已满。甲板。89,2114(2014)。 15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。89,2114(2014)。15 Y. Zhai和Al。 ,Eng已满。 甲板。 135,324(2018)。 https://typeoneergy.com/ [20! Sorbon和Al。 ,Eng已满。 甲板。 100,378(2015)。 [22 A A. Sykes和Al。15 Y. Zhai和Al。,Eng已满。甲板。135,324(2018)。https://typeoneergy.com/ [20!Sorbon和Al。,Eng已满。甲板。100,378(2015)。[22 A A. Sykes和Al。,ncle。Fusion 58,016039(2018)。<3- y。歌曲和Al。 ,Eng已满。 甲板。 183,113247(2022)。 24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。歌曲和Al。,Eng已满。甲板。183,113247(2022)。24-24 N. Yanagi和Al。 ,Ressing主题等离子体。 9,140,013(2014)。 ,Proc。 14th Symp。 Fusion Technology,1727(1986)。24-24 N. Yanagi和Al。,Ressing主题等离子体。9,140,013(2014)。,Proc。 14th Symp。 Fusion Technology,1727(1986)。,Proc。14th Symp。Fusion Technology,1727(1986)。
Pendry,《物理评论快报》85 (2000) 3966–3969。 [5] VA Pololskiy、NA Kuhta、GW Milton,应用物理快报 87 (2005) 231113。 [6] MW Feise、YS Kivshar,物理快报 A 324 (2005) 326–330。 [7] D. Schurig、JJ Mock、BJ Justice、SA Cummer、JB Pendry、AF Starr、DR Smith,《科学》314 (2006) 977–980。 [8] W. Cai、VK Chettiar、AV Kildishev、VM Sholoev,《自然光子学》1 (2007)。 [9] E. Lier,RK Show,电子快报 44 (2008) 1444–1445。 [10] E. Lier, DH Werner, CP Scarborough, Q. Wu, JA Bossard, Nature Materials 10 (2011) 216–222。[11] A. Alu, N. Engheta, Physical Review B 78 (2008) 1098–1121。[12] JH Lee, JG Yook, Applied Physics Letters 92 (2008) 254–103。[13] J. Zaran, O. Jaksic, C. Kment, Journal of Optics A-Pure and Applied Optics 9 (2007) 377–384。
路博润先进材料有限公司 (“路博润”) 希望您发现所提供的信息有用,但请注意,本材料(包括任何原型配方)仅供参考,您应自行负责评估信息的适当使用。在适用法律允许的最大范围内,路博润不作任何陈述、保证或保证(无论是明示、暗示、法定或其他形式),包括任何关于适销性或特定用途适用性的暗示保证,或关于任何信息的完整性、准确性或及时性的暗示保证。路博润不保证本文提及的材料与其他物质结合、在任何方法、条件或工艺、任何设备或在非实验室环境中的表现。在将含有这些材料的任何产品投入商业化之前,您应彻底测试该产品(包括产品的包装方式),以确定其性能、功效和安全性。您应对自己生产的任何产品的性能、功效和安全性负全部责任。路博润不承担任何责任,您应承担使用或处理任何材料的所有风险和责任。并非所有司法管辖区都批准任何索赔。任何提出与这些产品相关的索赔的实体都有责任遵守当地法律法规。本文所含内容不应被视为未经专利所有者许可而实施任何专利发明的许可、建议或诱导,您应自行负责确定是否存在与所提供信息相关的任何组件或组件组合的专利侵权问题。您承认并同意,您自行承担使用本文提供的信息的风险。如果您对路博润提供的信息不满意,您的唯一补救措施是不要使用该信息。
本白皮书旨在进一步加深人们的认识,即需要在可再生能源采购中融入财务和风险标准以外的其他观点。本文提出的原则是第一步,我们希望它能够成为一种标准化的采购方法,并将通过未来的考虑和迭代得到加强。我们认识到,这只是一场漫长而重要的对话的开始,特别是因为我们的集体组织只代表了确保社区、保护和气候问题得到全面解决所需的一小部分声音。我们还有很多可以学习的地方,以及当地领导人和土著社区、劳工团体和活动家的努力,他们致力于改善无数的社会问题。我们希望这是一个共同对话的开始,我们可以在对话中促进整个行业的学习,并扩大社区、保护和气候的声音。我们欢迎并感谢对这一合作计划的反馈和其他合作伙伴。
本文所含信息被认为是可靠的,但对其准确性、特定应用的适用性或将获得的结果不作任何形式的陈述、保证或担保。这些信息基于使用小型设备的实验室工作,并不一定表明最终产品的性能。由于商业上用于处理这些材料的方法、条件和设备各不相同,因此不保证或担保产品是否适用于所披露的应用。全面测试和最终产品性能是用户的责任。路博润先进材料公司对任何超出路博润先进材料公司直接控制范围的材料的使用或处理不承担任何责任,客户承担所有风险和责任。卖方不作任何明示或暗示的保证,包括但不限于适销性和特定用途适用性的暗示保证。本文中包含的任何内容均不得视为未经专利所有者许可而实施任何专利发明的许可、建议或诱因。