摘要 肝糖异生增加被认为是导致非胰岛素依赖型糖尿病 (NIDDM) 患者空腹血糖升高的一个重要因素。磷酸烯醇式丙酮酸羧激酶 (GTP) (PEPCK;EC 4.1.1.32) 是一种糖异生调节酶。为了研究 PEPCK 基因表达在 NIDDM 发展中的作用,我们培育了转基因小鼠系,这些小鼠在其自身启动子的控制下表达 PEPCK 微基因。转基因小鼠血糖升高,血清胰岛素浓度较高。此外,还检测到肝糖原含量和肌肉葡萄糖转运蛋白 GLUT-4 基因表达的变化。PEPCK 基因的过度表达导致原代培养肝细胞中丙酮酸产生葡萄糖增加。当进行腹膜内葡萄糖耐量测试时,血糖水平高于正常小鼠的血糖水平。该动物模型显示肝脏葡萄糖生成率的原始改变可能导致胰岛素抵抗和 NIDDM。
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2024年12月28日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2024.12.28.630614 doi:Biorxiv Preprint
1。马萨诸塞州波士顿波士顿儿童医院神经病学系2。 马萨诸塞州波士顿儿童医院儿科,遗传学和基因组学系 马萨诸塞州波士顿哈佛医学院生物医学信息学系4. 美国马萨诸塞州波士顿的哈佛医学院和马萨诸塞州医学院和马萨诸塞州的健康科学与技术计划5. 霍华德·休斯医学院,雪佛兰大通,马里兰州6。 生物学和生物医学科学研究生课程,哈佛医学院,马萨诸塞州波士顿7。 Ph.D. 日本伊巴拉基塔库巴大学的人类生物学计划,日本8。 生命与环境科学研究所,杜斯库巴大学,杜斯库巴大学,日本伊巴拉基,日本†这些作者为这项工作做出了同样的贡献。 *信件:Christopher.walsh@childrens.harvard.edu; peter_park@hms.harvard.edu马萨诸塞州波士顿波士顿儿童医院神经病学系2。马萨诸塞州波士顿儿童医院儿科,遗传学和基因组学系马萨诸塞州波士顿哈佛医学院生物医学信息学系4.美国马萨诸塞州波士顿的哈佛医学院和马萨诸塞州医学院和马萨诸塞州的健康科学与技术计划5.霍华德·休斯医学院,雪佛兰大通,马里兰州6。生物学和生物医学科学研究生课程,哈佛医学院,马萨诸塞州波士顿7。Ph.D. 日本伊巴拉基塔库巴大学的人类生物学计划,日本8。 生命与环境科学研究所,杜斯库巴大学,杜斯库巴大学,日本伊巴拉基,日本†这些作者为这项工作做出了同样的贡献。 *信件:Christopher.walsh@childrens.harvard.edu; peter_park@hms.harvard.eduPh.D.日本伊巴拉基塔库巴大学的人类生物学计划,日本8。生命与环境科学研究所,杜斯库巴大学,杜斯库巴大学,日本伊巴拉基,日本†这些作者为这项工作做出了同样的贡献。*信件:Christopher.walsh@childrens.harvard.edu; peter_park@hms.harvard.edu
这项研究探讨了将桉树素提取物(ELE)作为一种创新的伤口敷料策略,以解决抗生素耐药性的威胁及其相关并发症在伤口细菌感染中的并发症。该研究基于对药用植物固有的抗菌特性以及纳米材料的有利释放特性的识别,尤其是纳米材料的有利释放特性,尤其是电纺纳米纤维,这些纳米纤维紧密模仿细胞外基质。利用静电纺丝技术,用羟基甲藻素提取物制造纳米纤维垫,使用扫描电子显微镜(SEM),傅立叶 - 转换基础(FTIR)(FTIR)光泽性(FTIR)光泽性(x-ray diffraction(xrd)(xrd),使用扫描电子显微镜(SEM),其结构和形态属性进行了全面表征。该研究采用60只雄性Wistar大鼠,将其分为PVA/ELE,硝基呋喃酮,正常盐水和PVA伤口敷料的组。微生物和组织病理学分析是在感染后特定的间隔进行的。结果揭示了PVA/ELE的显着抗菌功效,与对照组相比,细菌计数的大幅度降低证明了这一点。此外,PVA/ELE组表现出优质的伤口尺寸减小,上皮化和胶原蛋白沉积,类似于硝基呋喃酮组观察到的影响。这些发现表明PVA/ELE具有明显的抗菌潜力,并促进了先进的伤口治疗过程。因此,这种富含Ele的电纺纳米纤维配方是传统伤口护理的一种有希望且可行的替代方案,在打击细菌感染和促进伤口愈合方面具有多方面的益处。
1 Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America, 2 Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, Texas, United States of America, 3 Sporos Bioventures, Houston, Texas, United States of America, 4 Department of Chemistry, Eukaryotic Pathogens Innovation Center, Clemson University,克莱姆森,南卡罗来纳州,美国,美国,5 UCB生物科学,贝恩布里奇岛,华盛顿,美国,美国6,新兴和重新出现的感染疾病和重新出现的感染性疾病和西雅图结构性基因组疾病中心,全球疾病中心,美国西特斯特氏症,美国7座,美国西特斯特氏症,西特斯特氏症,全球疾病,全球疾病,全球疾病,全球感染疾病研究中心研究,西雅图儿童研究所,美国西雅图,华盛顿,美国,美国8号免疫学系,杜克大学医学院,达勒姆,北卡罗来纳州达勒姆大学,美国,美国,美国肯塔基州路易斯维尔大学化学系9,美国肯塔基州路易斯维尔大学9号。
前糖尿病是一种疾病,其特征是空腹葡萄糖(IFG),葡萄糖耐受性受损(IGT)或糖化糖化的血红蛋白A1C(HBA1C)水平在5.7%和6.4%[1]之间。20-79岁的成年人中,2021年IFG和IGT的全球流行率为5.8%和9.1%。到2045年,IFG和IGT的全球流行率预计分别增加到6.5%和10.0%[2]。根据美国糖尿病协会(ADA)专家小组的说法,糖尿病前期70%的人最终将发展为糖尿病[3]。前糖尿病与患2型糖尿病(T2DM)的风险增加有关,与正常血糖症相关[4]。此外,对129项前瞻性研究的荟萃分析表明,前糖尿病与心血管疾病(CVD),癌症和全因死亡率的风险增加有关,中位随访9。8年[5]。临床试验表明,对正常血糖的回归与未来糖尿病的降低和CVD风险有关[6,7]。因此,对糖尿病前期及其危险因素的筛查以及从糖尿病前期恢复正常血糖很重要。胰岛素抵抗(IR)和β细胞功能障碍中的缺陷是从正常血糖到糖尿病到前和T2DM的进展的关键因素[8,9]。胰岛素抵抗的代谢得分(MetS-IR)是评估健康和高危个体中心脏代谢风险的指数,也是筛查胰岛素敏感性的有希望的工具[10]。然而,在患有人群的个体中尚未探索MetS-IR与回归与正常血糖的关联。在预测未来的T2DM [10]中,已经证明Met-S-IR比甘油三酸酯葡萄糖(TYG)指数和甘油三酸酯与高密度脂蛋白胆固醇(TG/HDL-C)的比率更好[10]。先前的研究表明,TYG指数与TG/HDL-C比率之间的负相关和非线性关联与糖尿病前期的正常血糖症的回归[11,12]。在这项研究中,我们旨在评估中国人患有前糖尿病的中国成年人中MetS-IR与正常血糖的回归之间的关联。在这项研究中,我们旨在评估中国人患有前糖尿病的中国成年人中MetS-IR与正常血糖的回归之间的关联。
在1965年,科学家摩尔最初发现了具有酸性特性的可溶性蛋白质,该蛋白在大脑的神经组织中广泛存在,但在非神经组织中的存在有限。这种蛋白质(称为14-3-2蛋白质或NSE)是一种大分子物质,在正常的外周体液体中存在最小的物质(Bock and Dissing,2010年)。nse在脑组织中表现出最高的分布,构成约1.5% - 3.0%的脑神经组织中所有可溶性蛋白,并且在人脑皮质中占40%-65%的烯醇酶。大脑的灰质具有大量神经元的群体,导致NSE浓度升高。相反,外周神经仅显示出中枢神经系统中观察到的NSE水平的1%-10%。因此,灰质表现出最高的NSE含量(Hein-née等,2008)。血液中NSE的量至少比大脑低30倍。当脑组织被缺血,中毒或创伤损害时,细胞膜的完整性被破坏并释放。将NSE释放到脑脊液中,随后进入血液,这是由于血脑屏障的崩溃而导致的,这是监测脑组织损伤后血液NSE水平改变的基础,这是由基本研究的发现所证明的(Angelov等,1994年)。nse是神经损伤的独特指标,并在调节神经细胞的生长和发育中起着至关重要的作用,这是由于其显着的神经特异性是在糖酵解过程中作为影响的烯醇酶(Hafner等人,2012年)。一旦神经元受损,它将迅速提高神经细胞的NSE合成速率,并在保护和修复受损的神经方面发挥补偿性作用。在丙酮酸激酶的作用下,NSE形成ATP并改善神经细胞来源的缺氧状态(Díaz-Ramos等,2012)。
肿瘤免疫疗法是解决常规肿瘤疗法的局限性(例如化学疗法和放疗)的有前途的方法,这些方法通常具有副作用,并且无法防止复发和转移。但是,免疫激活在肿瘤免疫疗法中的有效性和可持续性仍然具有挑战性。肿瘤免疫原性细胞死亡,其特征是免疫原性物质,损伤相关的分子模式(抑制作用)和与肿瘤相关的抗原(DTC)提供了潜在的溶液。通过包含更多免疫原性抗原和刺激因子来增强DTC的免疫原性,可以开发出免疫原性细胞死亡(ICD)癌症疫苗作为免疫疗法的强大工具。将ICD纳米诱导剂整合到常规疗法中,例如化学疗法,光动力疗法,光热疗法,声动力疗法和放射疗法提出了一种新的策略,以增强治疗效果并有可能改善患者结局。临床前研究已经确定了许多潜在的ICD诱导剂。但是,将这些发现有效地转化为临床相关的应用仍然是一个至关重要的挑战。本综述旨在通过为基于ICD的癌症疫苗的体外制备提供宝贵的见解来为这项努力做出贡献。我们探索了既定的ICD归纳工具,然后探索了个性化ICD归纳策略和疫苗设计。通过共享这些知识,我们希望刺激基于ICD的癌症疫苗领域的进一步发展和进步。
本文介绍并解释了在伤口净化过程中用电化学方法增强等离子活化水凝胶疗法 (PAHT) 抗菌作用的原理。该过程涉及在用氦 (He) 等离子射流治疗期间接地和水合聚乙烯醇 (PVA) 水凝胶薄膜。这在电化学上增强了过氧化氢 (H 2 O 2 ) 的产生,过氧化氢是 PVA 水凝胶中产生的主要抗菌剂。研究表明,通过电子解离反应以及与激发态物质、亚稳态和紫外 (UV) 光解相关的反应,H 2 O 2 的产生在电学上得到增强。通过等离子射流的氦流使 PVA 水凝胶脱水,在化学上增强了 H 2 O 2 的产生,这为与 H 2 O 2 产生相关的电化学依赖反应提供了能量。电化学过程在 PVA 水凝胶中产生了前所未有的 3.4 mM 的 H 2 O 2。该方法还增强了其他分子(如活性氮物质 (RNS))的产生。电化学增强的 PAHT 可高效消灭常见的伤口病原体大肠杆菌和铜绿假单胞菌,对金黄色葡萄球菌有轻微效果。总体而言,这项研究表明,新型 PAHT 敷料为控制感染和促进伤口愈合提供了一种有希望的抗生素和银基敷料替代品。
Clemson大学Clemson,SC 29634 2癌症系统成像UT MD Anderson癌症中心休斯顿TX 77030 3 Sporos Bioventures 3000 Bissonnet,Belmont Suite,Belmont Suite 5303 Houston,TX 77005,TX 77005 4真核病病病原中心Innovation Innovation Innovation Center of Clemson Clemson Clemson Clembriide Clembriide Clembri岛,SC296634444434344。 98110 6西雅图结构性基因组学中心全球感染疾病研究中心研究西雅图儿童研究所西雅图,西雅图98109 7免疫学系杜克大学医学院医学院达勒姆大学北卡罗来纳州27710