从2023年生产的440万吨基于生物的聚合物(CA)生产的基于生物纤维素的聚合物,基于生物的含量为50%和环氧树脂含量,基于生物的含量为45%,在基于生物的生产的一半中,为24%和30%。,其次是100%基于生物的聚乳酸(PLA),其中11%,聚酰胺(PA)(基于Breio)的含量为8%和30%的基于生物的聚氨酯(PUR)为7%。聚乙烯(PE)(可提供100%和30%的基于生物的含量)和聚三甲基三苯二甲酸酯(PTT)(基于生物生物的31%)的份额为6和5%(图2)。聚(丁二醇 - 二苯二甲酸丁二酸)(PBAT),聚对苯二甲酸酯(PET),聚羟基烷酸(PHA)和含淀粉的聚合物化合物(SCPC)的份额均低于5%。Aliphatic polycarbonates (APC; linear and circular), casein polymers (CP), ethylene propylene diene monomer rubber (EPDM), polybutylene succinate (PBS), polyethylene furanoate (PEF) and polypropylene (PP) had a share below 1 % of the total bio-based polymer production volume and are not depicted (see Overview of bio-based基于生物的内容的聚合物特性)。
肝细胞癌(HCC)具有较高的致死率和致残率,严重危害人类的生命。化学药物和化疗药物在HCC治疗中一直存在副作用、耐药性等问题,不能满足临床治疗的需要。因此寻找新型低毒高效的抗肝细胞癌药物并探究其作用机制成为当前HCC治疗中亟待解决的问题。已有多项研究报道了inotodiol的抗癌作用,本研究针对inotodiol在HCC细胞中的抗癌作用及其分子机制,旨在深入探究其抗癌作用。采用CCK8实验检测细胞存活率,划痕实验检测细胞迁移能力,克隆形成实验检测克隆形成能力,流式细胞术分析细胞凋亡和细胞周期。通过动物实验验证inotodiol对HCC的抑制作用。同时采用western blotting检测凋亡、细胞周期及MAPK/ERK通路相关蛋白。结果表明inotodiol具有促进细胞凋亡、抑制细胞增殖、迁移和克隆形成的能力,当CDK2、CDK4、CDK6和Cyclin D的表达受到抑制时,细胞周期被阻滞在G1期。此外,inotodiol表现出诱导细胞凋亡的作用,其特点是Bax表达增加,Bcl-2、Bcl-XL和MCL1表达减少,PARP1和caspase 3的剪切启动,以及MAPK/ERK通路的抑制。动物实验表明inotodiol具有抑制裸鼠肿瘤生长的能力,同时对小鼠的体重和脏器无明显影响。总之,本文提出的研究结果有力地表明,inotodiol 可以成为治疗肝细胞癌 (HCC) 的有希望的候选药物。
摘要:为了应对从化石燃料衍生的常规聚氨酯粘合剂的环境影响,这项研究引入了一种可持续的替代方法,该替代方法是利用基于木质蛋白的多元醇通过米稻草通过InEscop开发的过程进行的。本研究探讨了传统多元醇的部分取代,基于木质素的等效物在合成鞋类工业的反应性热融化聚氨酯粘合剂(HMPUR)中。通过热重分析(TGA),差异扫描量热法(DSC),流变学分析和T-PEEL测试对这些环保粘合剂的性能进行了严格评估,以确保它们符合相关的行业标准。初步结果表明,基于木质素的多元醇可以有效地取代大部分化石衍生的多元醇,维持必不可少的粘合剂特性,并标志着朝着更可持续的粘合剂溶液迈出的重要一步。这项研究不仅强调了木质素在可持续粘合剂生产领域的影响,而且还强调了农业副产品的价值,因此与聚合物行业的绿色化学和可持续性目标的原则保持一致。
我们希望提出一种细胞机制,以扩展对紫杉烷类药物的癌症选择性/特异性的理解,紫杉烷类药物是一类通过微管稳定作用而常用的抗癌药物。目前,几种主要实体肿瘤的一线治疗是基于紫杉烷的化疗,这种化疗是近四十年前制定的,尽管随着时间的推移而不断改进。紫杉烷类药物通过微管稳定机制发挥作用 [1-4]。目前,几种主要的紫杉烷类药物,如紫杉醇/紫杉醇、泰索帝/多西他赛和杰夫塔纳/卡巴他赛,被用作与其他药物(通常是铂类药物)联合使用的一线治疗方案,以及复发性癌症的二线药物。紫杉烷类药物在许多主要实体肿瘤中具有高度活性,尤其适用于治疗恶性和转移性癌症,包括乳腺癌、肺癌、前列腺癌、卵巢癌、头颈癌和宫颈癌,副作用大多可以忍受 [5-9]。几乎所有患有这些肿瘤类型的癌症患者在治疗过程中都可能接受紫杉烷类药物治疗。紫杉醇/紫杉醇(第一种紫杉烷)在稳定细胞微管和随之而来的癌细胞有丝分裂停滞方面的活性最初被发现,这推动了人们对紫杉醇作为抗癌药物的开发热情 [10,11]。通常,紫杉醇的抗癌活性(以及所有其他紫杉烷的抗癌活性)被认为是通过结合和稳定细胞微管而赋予的,这会干扰有丝分裂并导致细胞生长
摘要:常规紫杉烷类药物是多种恶性肿瘤化疗治疗的基石。然而,很大一部分患者并没有从治疗中获益,反而遭受了与溶剂或活性化合物相关的严重不良事件。Cremophor EL 和聚山梨醇酯 80 自由制剂、结合物、口服制剂和不同类型的药物输送系统是改善紫杉烷治疗的几种尝试的一些例子。在这篇综述文章中,我们讨论了紫杉烷类药物纳米介导药物输送系统在癌症治疗中的最新临床发展。本综述将讨论药物输送系统的靶向机制和临床环境中最常用的含紫杉烷药物输送系统的特征。关键词:纳米医学、纳米颗粒、药物输送系统、紫杉烷、癌症
可生物降解的塑料(BPS)已被广泛提倡作为石油衍生的聚合物的可持续替代品,旨在减轻微塑性污染的新兴危机。然而,BP的不完整生物降解剂可以生成更多和较小的颗粒,例如微塑料,可能会持续在环境中。在水生环境中,对BP的命运和影响,尤其是可生物降解的微塑料的知识仍然有限。我们研究了可生物降解的微塑料对各种水生环境中水生生物的浓度,检测方法和不利影响。可生物降解的微塑料,例如聚乙酸(乳酸),多羟基烷酸盐,聚丁二醇 - 脂肪酸 - 二甲酸酯)和聚(丁基琥珀酸酯),在废水,储层,储层和海洋环境中发现,浓度为0.054和180-180μg/l。他们的环境水平与水中的降解能力负相关。可生物降解的微塑料对水生微生物群落,植物的适应性和动物生理学的影响,其毒性随着降解而增加。本评论倡导对BPS周围的使用,处置和管理策略进行严格的重新评估。
ABS丙烯腈丁二烯 - 苯乙烯ABS。绝对吸收。吸收ACGIH美国政府工业卫生学家ACN丙烯腈法案。主动ADI可接受的每日摄入量(FAO/WHO)ADR不良药物反应ADSORP。吸附作业。农业agrichem。农业化学。农化学A.I.主动成分AKD烷基酮二聚体Alc。酒精,Amer。 美国AMTS。 含量为Anhyd。 无水的ANSI美国国家标准研究所AOX可吸附有机卤素AP烷基苯酚APE乙醇苯酚乙氧醇APHA APHA美国公共卫生协会应用程序。 应用程序AQ。 Asa Asa丙烯酸 - 丙烯酸 - 丙烯酸乙烯烯;烷基琥珀酸酐ASTM ASTM美国测试和材料学会Ath氧化铝三氢ATM大气 原子重量自动签名。 自动签名辅助。 辅助利用。 可用的AVG。 平均A.W. 原子量batf酒精,烟草和枪支(美国)BDG丁基Diglycol BGA BGA联邦共和国德国卫生部 认证BHA丁基化的羟基烷硅烷BHT丁基化羟基甲苯生物化学。 生化生物处理。 可生物降解的BKP漂白牛皮纸大厦。 建筑Blk。 黑色BMC散装成型化合物BOD生化氧需求BP British Pharmacopeia B.P. 沸点br丁二烯橡胶,polybutadienes b&r ball&ring br。,brn。 棕色酒精,Amer。美国AMTS。含量为Anhyd。无水的ANSI美国国家标准研究所AOX可吸附有机卤素AP烷基苯酚APE乙醇苯酚乙氧醇APHA APHA美国公共卫生协会应用程序。应用程序AQ。Asa Asa丙烯酸 - 丙烯酸 - 丙烯酸乙烯烯;烷基琥珀酸酐ASTM ASTM美国测试和材料学会Ath氧化铝三氢ATM大气原子重量自动签名。自动签名辅助。辅助利用。可用的AVG。平均A.W.原子量batf酒精,烟草和枪支(美国)BDG丁基Diglycol BGA BGA联邦共和国德国卫生部认证BHA丁基化的羟基烷硅烷BHT丁基化羟基甲苯生物化学。生化生物处理。可生物降解的BKP漂白牛皮纸大厦。建筑Blk。黑色BMC散装成型化合物BOD生化氧需求BP British Pharmacopeia B.P.沸点br丁二烯橡胶,polybutadienes b&r ball&ring br。,brn。棕色
1。超人类主义:社会和哲学运动。(2023)。访问:2023年10月12日:https://www.britannica.com/topic/transhumanism#ref1308463。2。Crowson MG,Lin V,Chen JM,Chan TC:机器学习和人工耳蜗 - 机遇和挑战的结构化审查。耳醇神经醇。 2020,41:e36-45。 10.1097/Mao.00000000002440 3。 Waltzman SB,Kelsall DC:使用人工智能编程人工耳蜗。 耳醇神经醇。 2020,41:452-7。 10.1097/mao.0000000000002566 4。 Wathour J,Govaerts PJ,Lacroix E,NaïmaD:在经验丰富的耳蜗植入患者中使用人工智能的CI编程拟合工具的效果。 耳醇神经醇。 2023,44:209-15。 10.1097/Mao.0000000000003810 5。 张X,Ma Z,Zheng H等。 :脑部计算机界面和人工智能的组合:应用和挑战。 Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109耳醇神经醇。2020,41:e36-45。10.1097/Mao.00000000002440 3。Waltzman SB,Kelsall DC:使用人工智能编程人工耳蜗。耳醇神经醇。 2020,41:452-7。 10.1097/mao.0000000000002566 4。 Wathour J,Govaerts PJ,Lacroix E,NaïmaD:在经验丰富的耳蜗植入患者中使用人工智能的CI编程拟合工具的效果。 耳醇神经醇。 2023,44:209-15。 10.1097/Mao.0000000000003810 5。 张X,Ma Z,Zheng H等。 :脑部计算机界面和人工智能的组合:应用和挑战。 Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109耳醇神经醇。2020,41:452-7。10.1097/mao.0000000000002566 4。Wathour J,Govaerts PJ,Lacroix E,NaïmaD:在经验丰富的耳蜗植入患者中使用人工智能的CI编程拟合工具的效果。耳醇神经醇。 2023,44:209-15。 10.1097/Mao.0000000000003810 5。 张X,Ma Z,Zheng H等。 :脑部计算机界面和人工智能的组合:应用和挑战。 Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109耳醇神经醇。2023,44:209-15。10.1097/Mao.0000000000003810 5。张X,Ma Z,Zheng H等。 :脑部计算机界面和人工智能的组合:应用和挑战。 Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109张X,Ma Z,Zheng H等。:脑部计算机界面和人工智能的组合:应用和挑战。Ann Transl Med。 2020,8:712。 10.21037/atm.2019.11.109Ann Transl Med。2020,8:712。10.21037/atm.2019.11.109
摘要:碳硼烷已成为硼中子俘获疗法 (BNCT) 中最有前途的硼剂之一。在此背景下,体内研究尤为重要,因为它们提供了有关这些分子生物分布的定性和定量信息,这对于确定 BNCT 的有效性、确定其定位和(生物)积累以及其药代动力学和药效学至关重要。首先,我们收集了用于体内研究的碳硼烷的详细列表,考虑了碳硼烷衍生物的合成或使用脂质体、胶束和纳米颗粒等递送系统。然后,确定了每项研究中采用的配方和癌症模型。最后,我们研究了与碳硼烷检测有关的分析方面,确定了文献中用于离体和体内分析的主要方法。本研究旨在确定碳硼烷在 BNCT 中使用现状和缺点,确定未来应用的瓶颈和最佳策略。