摘要:为了在电子封装领域引入新的键合方法,进行了理论分析,该分析应提供有关反应多层系统 (rms) 产生足够的局部热量以用于硅片和陶瓷基板之间连接工艺的潜力的大量信息。为此,进行了热 CFD(计算流体动力学)模拟,以模拟 rms 反应期间和之后键合区的温度分布。该热分析考虑了两种不同的配置。第一种配置由硅片组成,该硅片使用包含 rms 和焊料预制件的键合层键合到 LTCC 基板(低温共烧陶瓷)。反应多层的反应传播速度设置为 1 m/s,以便部分熔化硅片下方的焊料预制件。第二种配置仅由 LTCC 基板和 rms 组成,用于研究两种布置的热输出之间的差异。 CFD 模拟分析特别侧重于对温度和液体分数轮廓的解释。进行的 CFD 热模拟分析包含一个熔化/凝固模型,该模型除了模拟潜热的影响外,还可以跟踪焊料的熔融/固态。为了为实验研究的测试基板设计提供信息,模拟了 Pt-100 温度探头在 LTCC 基板上的实际行为,以监测实验中的实际键合。所有模拟均使用 ANSYS Fluent 软件进行。
摘要:镁合金因其重量轻、强度高和优异的机械性能而闻名,在许多应用中备受青睐。镁合金增材制造(Mg AM)的出现进一步提升了它们的普及度,具有无与伦比的精度、快速的生产速度、增强的设计自由度和优化的材料利用率等优势。该技术在制造复杂的几何形状、复杂的内部结构和性能定制的微结构方面具有巨大潜力,可实现突破性的应用。在本文中,我们深入研究了当前 Mg AM 采用的技术的核心工艺和关键影响因素,包括选择性激光熔化(SLM)、电子束熔化(EBM)、电弧增材制造(WAAM)、粘合剂喷射(BJ)、摩擦搅拌增材制造(FSAM)和间接增材制造(I-AM)。激光粉末床熔合(LPBF)精度高,但受到低沉积速率和腔室尺寸的限制;WAAM 为大型部件提供了成本效益、高效率和可扩展性; BJ 可实现定制部件的精确材料沉积,且具有环境效益;FSAM 可实现细晶粒尺寸、低缺陷率和精密产品的潜力;I-AM 具有较高的构建速度和工业适应性,但最近研究较少。本文试图探索 AM 未来研究的可能性和挑战。其中两个问题是如何混合不同的 AM 应用程序以及如何将互联网技术、机器学习和过程建模与 AM 集成,这是 AM 的创新突破。
图3.1示意图说明了脉冲激光消融事件的关键元素。(a)激光辐射的初始吸收(由长箭头表示),熔化和蒸发开始(阴影区域表示融化的材料,短箭头表示固体 - 液态界面的运动)。(b)融化前端传播到固体,蒸发持续,激光 - 泵相互作用开始变得很重要。(c)通过羽流和血浆形成吸收入射激光辐射。(d)融化前向后退,导致最终重新固定化。
摘要。表面熔化是南极冰架塌陷的主要驱动因素之一,随着全球气候的持续变暖,预计将来会增加,因为空气温度和熔化之间存在统计学上显着的正相关关系。增强的表面熔体将影响南极冰盖(AIS)的质量平衡,并通过动态反馈诱导全球平均海平面(GMSL)的变化。然而,南极中对表面熔体的当前理解在量化表面熔体和了解过去,现在和建筑环境中表面熔体的驱动过程的不确定性方面仍然有限。在这里,我们构建了一个新型的网格细胞级分布分布的正学位日(PDD)模型,该模型被强迫使用2 m的空气温度重新分析数据,并通过将卫星估计值和表面能量平衡(SEB)模型(SEB)模型(SEB)模型(SEB)模型(SEB)模型(SEB)模型(SEB)模型(SEB)模型(SEB)模型的每个计算单元格上的1979年至2022222222222.,我们根据PDD模型的性能评估了我们参数化方法的准确性,当时考虑了整个计算单元格,这与选择用于参数化的时间窗口有关。我们通过将用于PDD参数化的训练数据(卫星估计和SEB模型输出)增加±10%,并通过将恒定温度扰动( + 1, + 2, + 3, + 4和 + 5 o C)添加到2 M空气温度模型。我们发现,PDD融化范围和数量类似于训练数据的变化,其统计学上显着的相关性稳定,并且PDD熔体量融合的量随着温度的
在取样前,应将样品彻底均质化。将样品容器放入温度为 50°C 至 60°C 的烤箱中,并将样品保持在此温度,直到所有样品熔化并达到均匀的粘度。将搅拌器 (5.3) 的轴插入样品中,使轴头浸入容器底部约 5 毫米处。将样品均质约 5 分钟。对于已静置数月的流体样品,在均质前使用塑料棒去除粘附在样品容器底部的任何沉淀物。
塑料树脂颗粒是小颗粒,通常呈圆柱体或圆盘状,直径为几毫米。这些塑料颗粒是工业原料,运输到制造现场,通过重新熔化和模塑成最终产品,制成“用户塑料”。这些颗粒(通常称为塑料颗粒)可能会在制造和运输过程中无意中释放到开放环境中,从而对海洋和海滩造成污染。释放的树脂颗粒最终通过地表径流、溪流和河水进入海洋。树脂颗粒也可能通过运输过程中的意外泄漏直接进入海洋。
控制面板 • 断路器用于隔离和保护 • 接地漏电检测用于操作安全和人员保护 • 坩埚和加热器小时表 • 可编程时钟切换 • 模拟显示用于快速诊断 炉加热器在图表上显示,当任何电气面板正在吸收所需电流时,超亮 LED 会亮起。金属温度控制可以是浮动或固定高温计。可编程控制器将通过自动调整热量输入(无论是熔化还是保持)将金属温度保持在非常接近的范围内。数字显示屏显示所需和当前的金属温度。
许多类型的工艺设备用于制造塑料,包括注射模具,压缩模具,挤出机和旋转模具。所有这些过程的共同特征是将颗粒或粉末用作起始材料。饲料材料的特征必须符合某些标准,例如熔点。此外,化学成分,弯曲强度,抗压强度,抗冲击力,密度,耐药性和拉伸强度赋予了由此产生的工件。颗粒的粒径对聚合物的加工性有显着贡献。加热时料斗和熔化速率的流动性,对过程速度有直接影响。颗粒(颗粒)通常在200至2,000微米的范围内用于运输和应用。
马歇尔太空飞行中心 (MSFC) 的增材制造能力在世界级制造方面已名列前茅。随着选择性激光熔化 (SLM) 和定向能量沉积 (DED) 的不断发展,如今可以减少液体火箭发动机大部分组件和其他飞行硬件的复杂加工。MSFC 积极参与增材制造 (AM) 认证领域,制定行业 AM 标准以确保流程控制和持续的产品完整性。随着 AM 技术继续快速发展,MSFC 继续扩大与行业和学术界的合作伙伴关系。AM 大大降低了制造零件的成本和时间(根据零件形状和材料的不同,可减少 40-80%)。