摘要:激光熔覆提供了先进的表面处理能力,可提高部件的性能。然而,其有效性经常受到熔覆过程中热裂纹形成的挑战。本研究重点研究了通过激光熔覆应用于 304LN 不锈钢的新型钴基合金 (K688) 涂层中热裂纹的形成机理和抑制方法。结果表明,热裂纹的形成受液膜稳定性、应力集中和沉淀相的影响。大多数热裂纹出现在 25 ◦ –45 ◦ 大角度晶界 (HAGB) 处,因为这些晶界具有高能量,可稳定液膜。与高斯光束相比,平顶光束可产生具有较低温度梯度和更缓和的流体流动的熔池,从而降低涂层内的热应力和裂纹敏感的大角度晶界 (S-HAGB) 的比例。最后,通过使用平顶激光束优化工艺参数,可显著抑制裂纹形成。这些发现为实现异种材料的高质量激光熔覆提供了技术基础,为优化工艺参数以防止热裂纹的形成提供了见解。
本综述旨在回顾有限元法在优化工艺参数和提高粉末床熔合增材制造工艺部件的机械性能方面的应用。回顾了粉末床熔合过程模拟中的最新有限元模型。详细总结了宏观层面上激光束熔化或电子束熔化过程的数值建模方法。具体而言,阐明了零件模型预处理、工艺参数、网格方案和温度相关材料特性的重要性。还讨论了用于降低计算成本的模拟技术。然后回顾并讨论了现有的粉末床熔合过程模拟中的有限元模型。根据熔池和打印部件的特点对模拟结果进行分类。然后通过实验结果验证了模拟结果。最后,阐述了有限元法在材料设计、过程监控和控制以及工艺优化等其他增材制造问题方面的意义。总结了现有有限元模型的缺点。并提出了优化PBF工艺参数的潜在新方法。
本论文介绍了增材制造技术的最新进展,重点介绍了金属基增材制造技术,并介绍了金属粉末的生产。然后,介绍了 17-4 PH 不锈钢,概述了其在增材制造工艺中的特性。论文的实验部分描述了 Prima Additive 的机器、所用的粉末原料,以及样品的生产、制备和特性。从粒度分布、流动性和振实密度等方面分析了原料粉末。观察到了出色的流动性,这对于 DED 应用至关重要。然后,在单次扫描轨道上进行顶部和横截面观察,确定了沉积效果和熔池的几何特征。发现了它们与工艺参数之间的一些相关性。从孔隙率、微观结构和硬度等方面分析了大块立方体的质量。一般来说,它们具有高硬度和良好的孔隙率值,即使几组参数显示出比其他参数更多的缺陷。总之,单次扫描分析可以排除最关键的工艺参数集,而通过海量立方体分析可以找到整体上最有希望的参数集。
摘要 许多工艺都可用于制造功能梯度材料。其中,增材制造似乎是命中注定的,因为它可以近净成形制造复杂几何形状,并且有可能在一个部件中应用不同的材料。通过逐层调整起始材料的粉末成分,可以实现宏观的阶梯式梯度。为了进一步改善阶梯式梯度,必须提高原位混合程度,但根据现有技术,这种提高是有限的。本文介绍了一种通过应用激光重熔 (LR) 来提高熔池中原位材料混合程度的新技术。在激光粉末床熔合工艺中,使用纯铜和低合金钢研究了分层 LR 对界面形成的影响。随后进行了横截面选择性电子显微镜分析。通过应用 LR,混合程度得到增强,材料之间的反应区厚度也增加了。此外,界面处还形成了额外的铜和铁基相,导致化学成分梯度比没有 LR 的情况更平滑。Marangoni 对流和热扩散是观察到的效果的驱动力。
激光粉末床熔合中的功能分级材料成分有可能制造具有定制性能的复杂组件。实现这一目标的挑战在于,当前的激光粉末床熔合机技术仅设计用于处理粉末状原料。本研究介绍了一种用于激光粉末床熔合的多原料材料打印方法。利用胶体雾化,在激光粉末床熔合过程中,碳化钨纳米颗粒成功沉积在 316L 不锈钢粉末床上。通过这种方式,在惰性处理室气氛下,一定量的碳化钨纳米颗粒均匀分散在粉末床上。结果,用这种方法打印的样品强度有所增加。同样,胶体介质在产生的微观结构中也起着重要作用。它导致形成一致稳定的熔池和坚固的晶体结构。给出了成功分散大量纳米颗粒的建议。此外,还介绍并讨论了材料雾化在激光粉末床熔合中的应用前景。
在激光金属沉积 (LMD) 中,沉积轨道的高度会在层内和层间发生变化,从而导致工艺演变过程中出现显著偏差。先前的研究表明,在某些条件下会出现一种自稳定机制,保持高度有规律地增长,并保持零件和沉积喷嘴之间的恒定距离。在这里,我们分析了粉末收集效率和沉积高度稳定性之间的联系。为此,开发了一种监测系统来研究不同工艺条件下的沉积,使用在线测量样品重量并结合同轴光学三角测量获得的层高信息。使用分析模型根据高度监测和工艺参数实时估算沉积效率,并通过直接质量测量对其进行了验证。结果表明,轨道高度稳定与粉末收集效率降低有关,而粉末收集效率受熔池相对于粉末锥和激光束的相对位置控制。对于给定的一组参数,可以估算出间距以实现最高的粉末收集效率和通过构建方向的规则高度。
波士顿金属公司正在通过 MOE 开辟一条新的初级炼钢工艺路线。与使用碳还原铁矿石的传统路线(即将铁与矿石中的氧分离)不同,MOE 工艺使用直流电还原铁矿石。矿石在 1,600°C 左右的氧化物电解质中熔化,穿过熔池的电子将铁与氧分离,产生的副产品是氧气,而不是正常的 CO 和 CO 2 混合物。请参阅下面的公式。结果是清洁、高纯度的液态金属,可以直接送往钢包冶金,而无需重新加热。该工艺可用于所有铁矿石等级。MOE 工艺消除了焦炭生产、铁矿石加工、高炉还原和碱性氧气炉精炼的需要。它还可以取代天然气供给的 DRI 生产。该公司还在探索该技术用于铌和钒等其他高价值金属,并正在巴西投资一家试验工厂。新技术预计将在 2026 年实现钢铁商业化。自 2019 年以来,RHI Magnesita 一直是 Boston Metal 的主要合作伙伴。
增材制造技术提供了在局部层面创建和修改材料成分和结构的各种可能性,但往往容易出现不良缺陷和不均匀性。本贡献利用这些缺陷在金属中生成材料固有的隐藏代码和水印,用于认证和防伪应用。通过受控和随机的工艺变化,使用激光粉末床熔合 (L-PBF) 和激光定向能量沉积 (L-DED) 工艺产生了可以通过涡流设备读取和认证的唯一代码。提出了两种方法:首先,使用 L-PBF 制造具有确定形状的体积多孔结构。其次,通过交替工艺参数的 L-DED 制造涂层,导致磁导率的局部偏差。这种非确定性编码方法产生了一种独特的材料结构,可在涡流测量中触发高信号幅度。由于熔池动力学不可复制,伪造变得不可能。统计假设检验证明,该系统能够以 5 亿分之一的确定性防止错误接受或拒绝代码。一种新型锁定系统的低成本设置表明,可以在一秒钟内可靠地感知代码。
• Srinath Gudur、Suryakumar Simhambhatla 和 Venkata Reddy N.:通过分阶段变形增强直接能量沉积中的形状复杂性,Int. J. Automation Technol.,第 16 卷,第 5 期,页642- 653, 2022 • Srinath Gudur、Vishwanath Nagallapati、Sagar Pawar、Gopinath Muvvala、Suryakumar Simhambhatla:关于基材加热和冷却对电弧增材制造中焊道几何形状的影响及其与冷却速率的相关性的研究,今日材料:会议录,卷。 41,页431–436,1月2021 • Sagar Pawar、Srinath Ellaswamy Gudur、Vishwanath Nagallapati、Amit Choudhary、Arun Torris 和 Gopinath Muvvala:关于电弧增材制造 Inconel 625 多层壁的各向异性及其与熔池热历史的相关性的研究,Mater。科学。英语。 A,卷840,页142865,4月2022 • Vivek Chaitanya Peddiraju、Kranthi Kumar Pulapakura、Desuru Sree Jagadeesh、KSAthira、Srinath Gudur、S. Suryakumar、Subhradeep Chatterjee:在钛上焊接沉积镍以实现 Ti-Ni 基金属间化合物的表面硬化,Materials Today:Proceedings,vol。 27,页2096–2100 年 1 月2020 年。
本文档提供了有关实验和相关测量文件的详细信息,可在数据集“具有各种悬垂和支撑的镍基高温合金 625 工件的激光粉末床熔合过程中的原位热成像”中下载。测量数据是在使用商用激光粉末床熔合 (LPBF) 系统制造小型镍基高温合金 625 (IN625) 工件期间获得的。工件由两个半拱形特征组成,悬垂的斜率逐渐增加。这些悬垂范围从垂直 5° 到垂直 85°,增量为 10°。工件的几何形状和工艺受到控制,以确保沿悬垂几何形状的加工一致性。这种控制可以将悬垂几何形状和支撑结构的影响与层间扫描策略变化的影响隔离开来。测量包括每一层的高速热成像,从中可以计算出辐射温度、冷却速率和熔池长度。这次实验和数据传播的目的是双重的。第一个目标是为建模社区提供示例数据,以确保他们的模型能够正确考虑热模型中悬垂几何形状和支撑结构的影响。第二个目标是为研究人员和工艺设计人员提供有关悬垂几何形状如何影响 LPBF 工艺的基本见解。