除了是开启众多大众市场应用的消费电子设备的关键之外,半导体对于不那么光鲜和友好的系统也是必不可少的。工业环境可能极其恶劣,商业电子产品将无法生存。但是,仍然需要将电子设备添加到机械设备中以增加功能并扩展性能。某些应用必须在商业电子产品中使用的许多材料的熔点之外运行。这些包括飞机和涡轮发动机控制装置,以及用于能源勘探的监视器和井下钻井工具,图 1。这些环境具有极端温度、振动、压力和湿度水平以及其他压力因素。
属性值评分•方法PH:1.5-2.0熔点 /冻结点:无数据可用的沸点 /沸点范围:100°C / 212°F闪光点:> 100°C / 212°F ASTM D56 D56蒸发率:<1易燃性限制:无数据可用的蒸气压力:无数据可用的蒸气密度:无数据可用的信息相对密度可用:1.01溶解度(IES):可溶于水分分配系数:无可用的数据可用的可用信息自动签名温度:不适用的分解:不适用的温度:没有适用的信息可用的粒子特性:无适用的粒子特征
doi:https://doi.org/10.2298/SOS2001001F UDK: 546.271;622.785;676.056.73 超耐火过渡金属二硼化物陶瓷的致密化 WG Fahrenholtz 1*)、GE Hilmas 1、Ruixing Li 2 1 密苏里科技大学,密苏里州罗拉 2 北京航空航天大学,北京,中国 摘要:回顾了过渡金属二硼化物的致密化行为,重点介绍了 ZrB 2 和 HfB 2 。这些化合物被认为是超高温陶瓷,因为它们的熔点高于 3000°C。过渡金属二硼化物的共价键很强,导致熔点极高,自扩散系数低,因此很难对其进行致密化。此外,粉末颗粒表面的氧化物杂质会促进颗粒粗化,从而进一步抑制致密化。20 世纪 90 年代之前的研究主要采用热压进行致密化。这些报告揭示了致密化机制,并确定有效致密化需要氧杂质含量低于 0.5 wt%。后续研究采用了先进的烧结方法,如放电等离子烧结和反应热压,以生产出接近全密度和更高金属纯度的材料。还需要进一步研究以确定基本的致密化机制并进一步改善过渡金属二硼化物的高温性能。关键词:过渡金属二硼化物;致密化;烧结;热压。1. 简介过渡金属二硼化物 (TMB2) 作为用于极端环境的材料已被研究多年。 1-7 多种 TMB2 被视为超高温陶瓷 (UHTC),因为它们的熔点超过 3000°C,其中包括 TiB 2 、ZrB 2 、HfB 2 和 TaB 2。其他 TMB2,例如 OsB 2 和 ReB 2,作为新型超硬材料备受关注。8-10 TMB2 拥有不同寻常的性能组合,例如金属般的热导率和电导率以及陶瓷般的硬度和弹性模量,这是由共价键、金属键和离子键特性的复杂组合产生的。11-13 由于其性能,TMB2 被提议用于极端温度、热通量、辐射水平、应变速率或化学反应性,这些都超出了现有材料的能力。通常提到的 TMB2 的一些潜在应用包括高超音速航空航天飞行器、火箭发动机、超燃冲压发动机、轻型装甲、高速切削工具、熔融金属接触应用的耐火材料、核聚变反应堆的等离子体材料以及先进核裂变反应堆的燃料形式。5,14-22 TMB2 具有极高的熔化温度和硬度值,而同样的特性也使 TMB2 难以致密化。陶瓷材料的致密化可以通过多种方法实现。许多商用陶瓷都是通过无压烧结粉末加工方法制造的部件生产的。23-25有些陶瓷很难通过无压烧结致密化。
酸性催化的三聚化涉及使用酸性催化剂将单体分子组合到三聚体中。单体官能团的质子化促进了单体之间的化学键形成。 碱催化的三聚化依赖于基本催化剂来促进单体分子之间的反应。 单体的去质子化增强了它们的反应性,从而形成了三聚产物。 金属催化剂可以通过与单体协调并促进其组装成三聚合结构来介导三聚化反应。 过渡金属(例如钯,铂或镍)通常用作金属催化剂的三聚化反应中的催化剂。 三聚体分子具有相应单体的分子量的三倍,从而增强了尺寸和质量。 与单体前体相比,三聚体分子可能表现出不同的物理特性,例如沸点,熔点,溶解度和粘度。 三聚体分子通常由于单体单元之间形成其他化学键,通常显示出增加的化学稳定性。 三聚体分子可以采用特定的单体官能团的质子化促进了单体之间的化学键形成。碱催化的三聚化依赖于基本催化剂来促进单体分子之间的反应。单体的去质子化增强了它们的反应性,从而形成了三聚产物。 金属催化剂可以通过与单体协调并促进其组装成三聚合结构来介导三聚化反应。 过渡金属(例如钯,铂或镍)通常用作金属催化剂的三聚化反应中的催化剂。 三聚体分子具有相应单体的分子量的三倍,从而增强了尺寸和质量。 与单体前体相比,三聚体分子可能表现出不同的物理特性,例如沸点,熔点,溶解度和粘度。 三聚体分子通常由于单体单元之间形成其他化学键,通常显示出增加的化学稳定性。 三聚体分子可以采用特定的单体的去质子化增强了它们的反应性,从而形成了三聚产物。金属催化剂可以通过与单体协调并促进其组装成三聚合结构来介导三聚化反应。过渡金属(例如钯,铂或镍)通常用作金属催化剂的三聚化反应中的催化剂。三聚体分子具有相应单体的分子量的三倍,从而增强了尺寸和质量。与单体前体相比,三聚体分子可能表现出不同的物理特性,例如沸点,熔点,溶解度和粘度。三聚体分子通常由于单体单元之间形成其他化学键,通常显示出增加的化学稳定性。三聚体分子可以采用特定的
植物油的分馏技术对于修改油的理化特性并获得特定应用的优化分数至关重要。这些技术使脂肪可以根据其甘油三酸酯组成的不同熔点分离为分数(Kellens等,2007)。干燥(直接),溶剂(溶剂)和洗涤剂(表面活性剂)分级技术被确定为主要分级技术,而干分馏被认为是使用最广泛和环保的方法。该技术涉及以控制的方式冷却油,然后通过机械过滤将其分离成固体(stearin)和液体(油蛋白)级分(Timms,2005)。干分馏过程被广泛使用,尤其是在棕榈油行业,允许有价值的
Nomenclature for acyclic compounds only (trivial and IUPAC), DBE, hybridization(sp", n= 1,2,3) of C, N, O, halogens, bond distance, bond angles, VSEPR, shapes of molecules, inductive and field effects, bond energy, bond polarity and polarizability, dipole moment, resonance, resonance energy, steric inhibition of resonance,过度结合,𝞹 -M.环,带电的系统3,4,5,7环,融合点,熔点,沸点,氢化热,燃烧热,氢键(内部和分子间),冠 - 酸,酸度的概念,碱性反应中间体:碳定位,碳纤维,自由基,卡宾和硝基的结构和稳定性。
您将在实验室中学习如何安全处理和使用有机化学品。这将包括正确使用化学通风橱和个人防护设备。您将识别常见有机官能团(烷烃、烯烃、炔烃、烷基卤化物、醇、醚和胺)的化学性质,并测试这些物质的化学反应性。还将使用分子模型探索有机分子中的立体化学和手性概念。将遵循单步合成方案,并探索常见的合成有机技术。这些技术将包括液-液萃取、基于蒸馏、过滤和色谱的分离,以及通过熔点测定、红外光谱和色谱技术对有机分子进行简单表征。学分:3.0 先决条件:无 共同要求:化学 150 同等课程:无
离子之间的吸引力称为离子键。这些晶体是在电子吸引力差异很大的成分之间形成的,以便将电子从一个成分完全转移到另一个成分。离子之间的吸引力纯属静电力。离子固体的例子有:NaCl、CsCl 和 ZnS。由于这些离子被固定在固定位置,因此离子固体在固态下不导电。它们在熔融状态下导电。离子固体中的吸引力非常强,因此它们具有高熔点,并且只有沿某些方向施加力时才会分裂。所有离子固体都硬而脆。可以观察到,离子层的移动使具有相同电荷的离子彼此靠近,这会引起强烈的排斥力,从而导致晶体破裂。
冷气动力喷雾(CGD)是用于此过程的一般术语,尽管它也可以称为动力学金属化或动态金属化(Katanoda等,2007)。在1980年代初期首次在俄罗斯研究了使用CGDS方法涂层形成的现象。俄罗斯科学院西伯利亚分支机构的S.A. Khristianovich S.A. Khristianovich理论和应用机械学院(ITAM)的科学家团队开发了一种技术,可以通过将颗粒加速到超音速速度来应用金属涂料。这项研究导致了两项苏联专利的创建,该专利涵盖了使用高压气体在高于颗粒的熔点的高压加速金属颗粒的方法和设备,从而形成了非孔涂层,并形成了强烈的粘附于底物(Alkhimov等,1990年)。
熔点 /冻结点:无数据可用的沸点 /沸腾范围:100°C / 212°F闪光点:> 100°C / 212°C / 212°F ASTM D56蒸发率:<1(buac = 1)可燃性(固体,气体,气体,气体,气体):没有可用的数据可用数据可用数据:没有可用的数据限制:无需数据可用的数据:没有可用的蒸气密度的信息:无数据可用的相对密度可用的信息:1.011溶解度(IES):可溶性水分配系数:无数据可用的数据可用的自动签名温度:不适用分解温度:不适用的运动粘度:可用信息可用粒子特征:不适用的信息:不适用