1.1.3 纯物质的化学和物理特性 (a) 描述:无色液体,具有特征芳香烃气味 (Budavari, 1996) (b) 沸点:110.6 ° C (Lide, 1995) (c) 熔点:-94.9 ° C (Lide, 1995) (d) 溶解度:极微溶于水(20 ° C 时为 515 mg/L);溶于丙酮;可与二硫化碳、氯仿、乙醚、乙醇和冰醋酸混溶 (Budavari, 1996; Verschueren, 1996; Lide, 1997) (e) 蒸气压:6.4 ° C 时为 1.3 kPa;相对蒸气密度(空气 = 1),3.14 (Verschueren, 1996) (f) 闪点:4.4 ° C,闭杯(Budavari, 1996) (g) 爆炸极限:空气中体积上限 7.0%;下限 1.27% (美国政府工业卫生学家会议, 1992) (h) 换算系数:mg/m 3 = 3.77 × ppm
这项工作中使用的化学物质是商业购买的。元素分析是通过勒克瑙CDRI的微分析确定的。使用溴化钾托盘,将FTIR光谱记录在BrukerαTFT-IR分光光度计上。使用Varian Carry 5000,UV/VIS/NIR分光光度计记录电子光谱。使用TBAP用TBAP作为支撑电解质,用Epsilon Basi循环电压表确定化合物的电化学性能。使用电气操作的熔点装置对化合物的分解温度进行监测,其加热能力高达360ºC。理论研究,即研究化合物的分子几何参数和振动特性,前沿分子轨道(FMOS)以及分子静电势表面(MEP)(MEPS)使用B3LYP/ LANL2DZ组合进行了密度功能理论(DFT)。使用高斯09软件包进行DFT计算。
石墨是三种形式的晶碳之一。其他形式是碳纳米管,钻石和富勒烯。在石墨中,碳原子在平行堆叠的平面蜂窝状片片上密集排列。当石墨结构只是一块厚的平面纸时,称为石墨烯。石墨用于生产石墨烯。石墨烯非常轻巧。石墨的颜色为灰色至黑色,不透明,通常具有金属光泽,尽管有时表现出暗淡的泥土光泽。石墨自然发生在变质岩石中。这是一种柔软的矿物质,具有1到2的MOHS硬度,并且表现出完美的基础(一平面)裂解。石墨是柔性但不是弹性的,其熔点为3,927摄氏度(°C),是高度难治性的,并且具有低比重。石墨是非金属的最电导性,是化学惰性的。这些特性使许多工业应用都具有自然和合成石墨。
金属间化合物是一类特殊的金属材料,其特性使其可以在传统金属材料失效的条件下使用;这些条件包括高温、腐蚀性环境以及极端的磨蚀和粘合应力。许多金属间化合物表现出非常好的物理和机械性能,特别是非常好的热稳定性、高熔点、良好的耐腐蚀性和低密度,这使它们成为高温应用的合适候选材料。然而,这些材料的延展性有限,脆性较高,尤其是在低温下,这阻碍了它们的广泛应用。基于中间化合物的材料的用途非常广泛,但始终有必要从物理或机械性能的角度考虑特定材料的选择。它们被用作建筑材料、形状记忆材料(NiTi)、电阻炉加热元件(MoSi2)、磁性合金(Ni3Fe)、储氢材料(Mg2Ni、LaNi5)或高温材料(TiAl、NiAl),或用于强氧化环境(FeAl)。
物理状态 : 液体 外观 : 粘稠液体 颜色 : 琥珀色 气味 : 略带醚味 气味阈值 : 无可用数据 pH : 无可用数据 熔点 : 不适用 凝固点 : 无可用数据 沸点 : > 107.3 °C 闪点 : > 93.4 °C 相对蒸发率(乙酸丁酯 = 1) : 无可用数据 可燃性(固体、气体) : 不适用。蒸汽压 : 无可用数据 20 °C 时的相对蒸汽密度 : 无可用数据 相对密度 : ≈ 1.15 溶解性 : 无可用数据 正辛醇/水分配系数 (Log Pow) : 无可用数据 自燃温度 : 无可用数据 分解温度 : 无可用数据 运动粘度 : 无可用数据 动态粘度 : 无可用数据 爆炸极限 : 无可用数据 爆炸性质 : 无可用数据 氧化性质 : 无可用数据
性质 值 备注 • 方法 熔点 / 凝固点 无数据 未知 沸点 / 沸程 (°C) 无数据 未知 可燃性 (固体、气体) 无数据 未知 空气中的可燃性极限 未知 可燃性上限: 无数据 可燃性下限: 无数据 闪点 无数据 开杯 自燃温度 无数据 未知 分解温度 未知 pH 无数据 未知 pH (水溶液) 无数据 无信息 运动粘度 无数据 未知 动态粘度 无数据 未知 水溶性 无数据 未知 在其他溶剂中的溶解度 无数据 未知 分配系数 无数据 未知 蒸气压 无数据 未知 相对密度 无数据 未知 堆积密度 无数据 液体密度 无数据 蒸气密度 无数据 未知 颗粒特性 颗粒大小 无信息 颗粒大小分布 无信息
入围候选人将通过电子邮件/电话通知并邀请参加面试。参加面试不会获得任何 TA/DA 报酬。该职位立即可用。面试将于 2023 年 5 月/6 月举行。任命将与项目同时结束,纯属临时任命。选择将基于资格、经验和面试表现。NITK Surathkal 保留拒绝任何或所有申请的权利,无需说明任何理由。项目摘要:由于磨损、腐蚀和氧化导致表面退化,挑战日益增加,发电厂或飞机工业中使用的大多数工程部件都面临性能下降和产品设计寿命缩短等问题。对能够一次性解决许多问题的新型材料的需求是当务之急。如果说到锅炉或燃气轮机,涂层需要具有抗高温侵蚀、腐蚀和氧化性能。这主要是因为解决任何类型的表面退化都无助于应对挑战环境。众所周知,NiAl 合金具有高温性能。然而,关于它们作为热喷涂涂层的应用研究尚未详细探讨,尤其是当 NiAl 用 cBN 和 SiC 等硬质相增强时。NiAl 具有有序的晶体结构、低密度、高熔点、高硬度、高机械强度、高温腐蚀和耐磨性。另一方面,CBN 和 SiC 颗粒是基础。它们以高熔点、低密度和极高的硬度而闻名。它们具有高耐化学性、良好的高温强度、优异的抗热震性和优异的耐磨性。这些属性是解决表面退化问题的增强相的完美选择。因此,本提案重点关注使用 HVAF 和激光重熔技术开发以 CBN 和 SiC 为增强相的新型 NiAl 复合涂层。生产的涂层可用于保护发电厂的锅炉部件或修复某些飞机部件。NiAl 与 CBN 或 SiC 复合涂层将使用 HVAF 和激光重熔技术。将进行的主要实验是高温滑动磨损、侵蚀和氧化试验。将详细研究添加 cBN 和 SiC 将如何影响 NiAl 复合涂层的高温行为。
电子设备在从汽车和智能手机到医疗设备,设备等的所有事物中都起着至关重要的作用。随着新技术的快速进步和部署,使用旧一代硬件的设备很快就会过时,并丢弃了其最新同行的设备。例如,平均智能手机在升级前估计要有2 - 3年[29]。在2019年,电子产品的这种快速消费周期的电子废物量约为5360万吨(MT),预计该数字将在2030年每年迅速增长到74(MT)以上,使电子废物以每年2亿吨的2吨[9]成为增长最快的废物流。同时,电子废物的回收率每年仅增长0.4吨。电子产品是一些最复杂的废物流。这包括用于减少导电迹线的焊料或金和铜的熔点,半导体材料的熔点,例如用于高性能转移的半导体材料,例如用于高性能转移的木质材料,热塑性和热塑性树脂以及各种特种化学物质,例如阻燃剂。尽管这些材料对各自的应用具有理想的特性,但其中许多材料也具有剧毒,对人类健康和环境正义具有重大影响。复杂的性质和危险材料为回收施加了高昂的成本,这导致许多更富有,更发达国家将其电子垃圾发送到国外[30]。在这项工作中,我们探索了图。1。具体来说,我们可以创建一个完全圆形的生产cy-cle,其中可以通过自然生物周期回收,再生或再生电子产品?我们强调,设计包含可生物降解材料的真实设备的这种愿景不是依赖尚未发明的技术的抽象未来。在这项工作中,我们证明可以构建端到端功能鼠标,该端机鼠标结合了现有的可生物降解材料和制造技术。我们选择一只鼠标作为案例研究,并表明我们可以立即减少体现碳足迹并通过设计减轻电子废物的危害。我们通过可持续HCI(SCHI)[2,17,22]的镜头来解决电子废物的问题,并列出了我们在下面概述的设计和原型电子设计的四个指导原理:
2002 年,欧盟颁布了一项指令(欧盟指令 2002/95/EC),要求 2006 年 7 月 1 日后投放市场的新电气和电子设备及系统不得含有铅 (Pb) 或其他对环境有害的物质。铅被用作分立电气和电子元件的表面镀层,用于焊接目的(例如锡/铅焊料合金),包括集成电路、半导体、电容器、电阻器和其他电子电路,广泛应用于飞机或飞机设备上。迄今为止,没有一种无铅合金可以完全替代过去 50 多年来在电子电气行业广泛使用的锡铅 Sn-Pb 共晶合金。许多提议的替代材料的熔点高于当前的共晶锡铅,而一些低温材料将无法承受极端的航空航天操作环境。无铅焊料和涂层可能会降低系统或子系统的可靠性。以下因素可能会影响安全性和系统性能: