2002 年,欧盟颁布了一项指令(欧盟指令 2002/95/EC),要求 2006 年 7 月 1 日后投放市场的新电气和电子设备及系统不得含有铅 (Pb) 或其他对环境有害的材料。铅被用作离散电气和电子元件(包括集成电路、半导体、电容器、电阻器和其他电子电路)的焊接表面镀层(例如锡/铅焊料合金),这些元件广泛用于飞机或飞机设备上。迄今为止,没有一种无铅合金可以完全替代过去 50 多年来在电子和电气行业广泛使用的锡铅 Sn-Pb 共晶合金。许多提议的替代材料的熔点高于当前的共晶 Sn-Pb,而一些低温材料将无法承受极端的航空航天和航空操作环境。无铅焊料和涂层可能会降低系统或子系统的可靠性。以下因素可能会影响安全性和系统性能:
性质 值 备注 • 方法 pH 无可用数据 未知 熔点 / 凝固点 无可用数据 未知 沸点 / 沸程 (°C) 无可用数据 未知 闪点 无可用数据 开杯粘度 无可用数据 未知 蒸发速率 无可用数据 未知 可燃性 (固体、气体) 无可用数据 未知 空气中可燃性极限 未知 可燃性上限: 无可用数据 可燃性下限: 无可用数据 蒸气压 无可用数据 未知 蒸气密度 无可用数据 未知 相对密度 无可用数据 未知 水溶性 无可用数据 未知 在其他溶剂中的溶解度 无可用数据 未知 分配系数 无可用数据 未知 自燃温度 无可用数据 未知 分解温度 未知 运动粘度 无可用数据 未知 动态粘度 无可用数据
负载催化活性液态金属溶液 (SCALMS) 在烷烃脱氢方面表现出色,尤其是在抗结焦方面。SCALMS 由多孔载体组成,载体上含有催化活性低熔点合金颗粒 (如 Ga-Pd、Ga-Pt),这些颗粒在反应温度下为液态。在新成立的合作研究中心 CRC1452“液体界面催化 (CLINT)”(www.sfb1452.research.fau.eu/),佛罗里达大西洋大学的跨学科科学家小组开发了此类新型催化材料,将选择性、生产率、稳健性和易加工性完美结合。需要对这些催化剂在不同长度尺度上进行高分辨率和 3D 表征,以揭示复杂的孔隙和颗粒形貌、(晶体) 结构、化学组成和催化活性位点的位置,这对于从根本上了解催化过程是必不可少的。在 IMN(www.em.tf.fau.de),我们已经开始使用 CENEM(www.cenem.fau.de)提供的最先进的电子显微镜和纳米 CT 仪器探索 SCALMS 系统的结构特性。
石墨是三种形式的晶碳之一。其他形式是碳纳米管,钻石和富勒烯。在石墨中,碳原子在平行堆叠的平面蜂窝状片片上密集排列。当石墨结构只是一块厚的平面纸时,称为石墨烯。石墨用于生产石墨烯。石墨烯非常轻巧。石墨的颜色为灰色至黑色,不透明,通常具有金属光泽,尽管有时表现出暗淡的泥土光泽。石墨自然发生在变质岩石中。这是一种柔软的矿物质,其硬度硬度为1至2,并且表现出完美的基础(单平)裂解。石墨是柔性但不是弹性的,其熔点为3,927摄氏度(°C),并且具有高度难治性。它具有低比重。石墨是非金属的最电导性,是化学惰性的。所有这些属性的结合使许多工业应用都需要自然和合成石墨。
摘要:纳米颗粒制剂是一种最近开发的具有增强靶向潜力的药物输送技术。纳米颗粒封装所选药物,并通过位于纳米颗粒表面的靶向分子(例如抗原)将其输送到目标。纳米颗粒甚至可以靶向深层穿透组织,并且可以模拟通过血脑屏障输送药物。这些进步为癌症和阿尔茨海默氏症等疾病提供了更好的靶向性。各种聚合物都可以制成纳米颗粒。本文研究的聚合物是聚己内酯 (PCL)、聚(乳酸) (PLA)、聚(乳酸-共-乙醇酸) (PLGA) 和聚(乙醇酸) (PGA)。本研究的目的是分析这些聚合物的机械性能,以确定药物输送趋势并模拟药代动力学和生物运输。我们发现,一般来说,随着熔点、弹性模量和拉伸强度的增加,降解率也会增加。 PLA复合材料由于其良好的降解控制,可能成为药物输送的理想聚合物。
1 引言 镍基高温合金具有优异的高温力学性能、高抗蠕变和疲劳性能以及非常好的耐腐蚀性能,被广泛应用于现代航空发动机和燃气轮机的涡轮叶片。镍基高温合金在恶劣条件下长期服役的性能,很大程度上取决于合金元素、合金浓度和强化相的形态。在工业实践中,镍基高温合金 René N5 在完全热处理状态下使用。固溶处理可使微观结构部分均质化,随后的时效可获得高体积分数的立方体状 γ′ 沉淀物。因此,获取更多有关铸态高温合金微观结构和性能的信息对于正确设计和控制后续热处理至关重要。枝晶间和枝晶间元素的凝固偏析会诱发非平衡相的形成,如碳化物、共晶相或其他低熔点相,这些相应在均质化过程中溶解[1-3]。
增材搅拌摩擦沉积 (AFSD) 是一种新兴的固态增材制造技术,其中材料逐层沉积。与基于熔合的增材制造工艺不同,AFSD 依靠旋转工具通过摩擦热和压力挤压和粘合原料材料,使材料温度低于其熔点,以消除与熔合相关的缺陷。由于其高沉积速率,它适用于大型结构制造。然而,AFSD 仍处于开发阶段,存在关于沿构建高度的硬度变化、缺陷形成和残余应力分布的问题。在本研究中,使用光学显微镜、维氏硬度测试和中子衍射检查了 AFSD 制造的结构。光学显微镜显示第一层和基材界面以及沉积边缘存在缺陷,而硬度测试表明沉积硬度从最后一层到第一层降低。中子衍射显示基材熔合区附近存在拉伸残余应力,而大多数沉积物中存在压缩残余应力。
这项研究的重点是HES-DABA地区的流体夹杂物。微热测量是在从表面静脉收集的石英上进行的,该石英分为两个阶段:液体和蒸气。平均均质化温度范围为150°C至367°C,冰的熔点范围为-0.05°C至-1.14°C,表明纳入溶液由0.1至1.9等方程组成。wt%NaCl。评估热史和热结构以估计形成温度。通过X射线衍射分析选定的样品,以提供地热储层的直接数据;这是必要的,因为地热流体通过它们的相互作用可以改变岩石的组成和特性。主要改变的矿物是石英,方解石,脂肪,附子,赤铁矿,伊利石,蒙脱石和氯酸盐。因此,粘土构成向高温环境的过渡,这是由高温水热改变矿物(例如石英(> 180°C)和epidote(〜250°C)所证明的。
暴露限制:无监管限制;密封物品。个人防护设备 (PPE) 眼睛防护:符合 ANSI Z87.1 标准或同等标准的工业安全眼镜。手套:处理密封单元时无需佩戴。服装:建议穿着高棉含量服装 (>65%),以及导电鞋或腿部保护器、腕部保护器和静电耗散外套,以避免静电积聚。呼吸防护:处理密封单元时无需佩戴。通风:处理密封单元时无需佩戴。其他防护:未注明。工程控制:建议接地或其他控制以减少静电积聚。暴露指南:在处理密封单元时,该产品不太可能发生可测量的暴露。9.物理和化学特性 a) 外观:金属军械硬件 b) 气味:无味 c) 气味阈值:不适用 d) 25°C 时的 pH 值:不适用 e) 熔点/凝固点:不适用 f) 沸点:不适用 g) 闪点:不适用