随着社会向更大的电气化的过渡,将需要明显更具成本效益的电力。马耳他配对,高效的热交换器和冷却液系统与能源,动力和化学工业不可或缺的化学工业相结合,熔融盐储存技术在全球浓缩的太阳能电厂部署。它可以根据需要提供可再生能源,并产生清洁的工业热量,可用于种植国内制造和增强制造的金属,水蒸馏,食品加工和其他领域。
VISIJET® 铸造蜡 这些材料的熔点比传统蜡低,产生的熔融蜡没有灰分或残留物。此外,这些蜡不需要用石蜡密封剂进行精加工。由于这些优势,VisiJet® 100% 蜡材料经常用于熔模铸造工艺。这种蜡是珠宝和矫形外科铸造应用的首选材料,因为它可以实现更清洁、更光滑的表面、更高的精度和更高质量的表面光洁度。
当在熔融挤出过程中与再生或纯聚酯或尼龙混合时,CICLO®活性成分会产生吸引自然存在的微生物的途径。这可以使CICLO®纤维的完全生物降解,仅留下自然元素。仅在长期暴露于水分和微生物后才激活生物降解,确保纤维和织物在使用过程中保持其耐用性和性能。
氯化物盐具有在高达 800 C 的极高温度下使用的巨大潜力(例如 MgNaK//Cl 混合物),但也可用作低熔点 HTF,例如共晶 ZnNaK//Cl(T m = 200 C)的情况。[12] 由于具有足够的热容量,氯化物盐是熔融盐催化转化过程中最有前途的 HTF。 尽管如此,其化学性质也带来了技术挑战。 在热能存储领域,由于氯化物盐在高温下对金属合金的腐蚀性质,人们对其进行了深入研究。 人们普遍认为,腐蚀机理受许多参数的影响,主要是温度、盐纯度以及主要基于氧和/或水分的杂质的存在(例如,参见 Ding 关于熔融氯化盐腐蚀的综述 [12])。在未来的热能存储中发挥重要作用的MgCl 2基熔盐中,主要的腐蚀性杂质已被鉴定为羟基氯化物(MgOHCl),并且假定它是水合MgCl 2水解的产物。 [12,13]可以使用不同的方法显着降低杂质水平,例如电解盐净化[14]或添加牺牲剂,例如元素Mg,[15]与杂质反应形成惰性MgO。以类似的方式,添加固体氧化物(例如ZnO和CaO)可显着减少
B214 金属粉末筛分分析试验方法 B215 金属粉末取样规程 B243 粉末冶金术语 B329 用 Scott 体积计测定金属粉末和化合物表观密度的试验方法 B417 用 Carney 漏斗测定非自由流动金属粉末表观密度的试验方法 B527 金属粉末和化合物振实密度的试验方法 B703 用 Arnold 计测定金属粉末和相关化合物表观密度的试验方法 B783 铁基粉末冶金 (PM) 结构部件材料规范 B822 用光散射法测定金属粉末和相关化合物粒度分布的试验方法 B855 用 Arnold 计和 Hall 流量计漏斗测定金属粉末体积流速的试验方法 B923 用氦或氮比重瓶法测定金属粉末骨架密度的试验方法B964 用卡尼漏斗测定金属粉末流速的试验方法 E539 用波长色散 X 射线荧光光谱法分析钛合金的试验方法 E572 用波长色散 X 射线荧光光谱法分析不锈钢和合金钢的试验方法 E1447 用惰性气体熔融热导率/红外检测法测定钛和钛合金中氢的试验方法 E1569 用惰性气体熔融技术测定钽粉中氧的试验方法 (2018 年撤回) 4
不同的 AM 生产工艺包括板材层压、挤压沉积、颗粒材料粘合和光聚合,用于多个行业的各种应用,包括汽车、航空航天、机械、医疗保健和消费品。当今使用的最重要的技术是熔融沉积成型 (FDM)、选择性激光烧结 (SLS) 和熔化 (SLM)、立体光刻 (SLA) 和 PolyJet 1 ,以金属、塑料、陶瓷和复合材料为主要材料(见图 1)。
•电化学材料工程(添加剂制造,金属/金属氧化物协助减少CO2的电化学还原,恢复和回收的锂离子电池的恢复和回收,硅PVS电化学上的熔融盐电解,用于新的年龄应用,用于新的年龄应用,使用微生物材料恢复,使用微生物/电源源/电源孔/电源,•组合合金设计suhash@msme.iith.ac.in +91(40)2301 6552
连续铸造可以看作是一种热量提取过程。将熔融金属转化为固体金属形状涉及去除过热和凝固潜热。液态金属在模具中凝固,模具是连续铸造设备中最关键和最重要的部件。模具中的热传递是限制最大生产率的主要因素之一。铸造速度越高,传递到模具中的热量就越多,因此从模具到模具的热传递必须增加,以使模具中的形状凝固。
为了在热熔融粘合剂组成中实现均匀性,首先是混合的,主要是必要的。这些粘合剂由几个不同的组件制成,每个组件具有不同的质量和特性,包括聚合物,树脂,添加剂和填充剂。由于正确的混合,这些元素均匀地分散在整个粘合剂矩阵中。由于相关位置的任何变化都可能导致不一致的粘合性能,包括粘结强度,铲球和耐温性,因此这种同质性至关重要。