摘要:熔融生长氧化铝基复合材料因其在航空航天应用方面的潜力而受到越来越多的关注;然而,快速制备高性能部件仍然是一个挑战。本文提出了一种使用定向激光沉积(DLD)3D 打印致密(< 99.4%)高性能熔融生长氧化铝-莫来石/玻璃复合材料的新方法。系统研究了复合材料的关键问题,包括相组成、微观结构形成/演变、致密化和力学性能。利用经典断裂力学、格里菲斯强度理论和固体/玻璃界面渗透理论分析了增韧和强化机制。结果表明,复合材料由刚玉、莫来石和玻璃或刚玉和玻璃组成。随着初始粉末中氧化铝含量的增加,由于成分过冷度的减弱和小的成核过冷度,刚玉晶粒逐渐从近等轴枝晶演变为柱状枝晶和胞状结构。氧化铝含量为 92.5 mol%时显微硬度和断裂韧性最高,分别为 18.39±0.38 GPa 和 3.07±0.13 MPa·m 1/2 ;氧化铝含量为 95 mol%时强度最高,为 310.1±36.5 MPa。强度的提高归因于微量二氧化硅掺杂提高了致密性,同时消除了残余应力。该方法揭示了利用 DLD 技术制备致密高性能熔融生长氧化铝基复合材料的潜力。关键词:激光;增材制造;氧化铝;莫来石;微观结构;力学性能
• 选定的技术: • 用于电网规模存储的锂离子电池 • NA-S(钠硫)电池(熔融钠阳极、熔融硫阴极、β-氧化铝固态电解质) • 钒氧化还原液流电池(VRB)
熔融硝酸盐和/或氯化盐是用于存储与太阳能热能应用相关的热能的常见候选物。这些熔融盐必须包含在存储系统中,通常由冷水罐组成。当直接阳光不可用时,储存的热能从熔融盐通过热交换器和发电机回收。问题在于坦克衬里。例如,特殊的不锈钢罐已用于熔融硝酸盐盐。仍然,在盐工作温度下,不锈钢的腐蚀和热机械故障是主要问题。随着时间的流逝,不锈钢腐蚀和降解,因此需要一种对熔融盐无反应的难治系统,但同时是一种有效的热绝缘子,尤其是当可能发生盐渗透到油罐衬里时。储罐温度降低,可以使用更负担得起的储罐建筑材料,例如碳钢。确定一个地球聚合物(GP)粘合剂系统在装有粉煤灰微球时适合该法案。将详细介绍此GP难治的组成和特性。仍然,标称密度为60磅的耐火材料(0.96 g/cc),> 2000 psi(13.8 MPa)的抗压强度和2.2至2.8 btu- in/hr-ft 2.2至2.8 btu- in/hr-ft²·°f(根据平均温度)的使用范围为1832222222.100020002000200020002000。
本研究文章提出了一种创新的方法,可以通过将实时建模和优化与熔融盐储能(MSE)(MSE)和超临界蒸汽周期(S-SC)相结合,从而增强可持续的发电和电网支持。随着可再生能源使用的增长,间歇性资源可用性挑战电网稳定性和可靠的电源。为了解决这个问题,我们开发了一个系统,该系统将实时建模和优化合并,以精确控制MSE和S-SC组件。这种集成确保了不间断的能源产生,存储和分布,从而在高需求期间优化了可再生能源使用。数学模型和仿真评估了系统的动态行为,性能和经济可行性。严格的技术分析强调了成本效益和环境收益。发现揭示了出色的能源效率和网格支持,这使其成为可持续发电和网格稳定性的有前途的解决方案,并在可再生能源增长的情况下。实时建模和优化是现代能源系统中的关键组成部分。联合热量和功率(CHP)系统可实现56%的能源效率,而考虑到下设计的影响,而无需使用的63.61%。此外,在设计方案下,整体系统的发电效率从设计时的73.36%降至约63.55%。关于经济方面,CHP系统的级别存储成本(LCO)估计为114.4€ /兆瓦,具有外部设计条件,没有106.8欧元 /兆瓦。
表1中列出的用于建造核电站的设备的估计排放是基于需要适量进行地形修饰的站点的单个核电站估计的设备使用时间(Unistar 2007-TN1564)。建筑设备一氧化碳(CO)排放估计值是从设备使用的时间得出的,然后使用CO排放估算二氧化碳(CO 2)排放量,使用缩放系数为172吨/吨的CO(Chapman等)(Chapman等2012- TN2644)。缩放系数基于CO 2与柴油燃料工业发动机的CO排放因子的比率,如AP-42 AP-42汇编的表3.3-1所报道(EPA 2012-TN2647)。A CO 2至总温室气体等效因子为0.991,以解释其他温室气体的排放,例如甲烷(CH 4)和一氧化二氮(N 2 O)(Chapman等人(Chapman等)2012-TN2644)。等效因素基于非道路/建筑设备,根据相关指南(NRC 2014-TN3768; Chapman等人。2012-TN2644)。假定退役的设备排放估计值是建筑设备的设备排放量的一半。没有用于退役的设备排放数据的数据;一半的因素是基于这样的假设,即与参与建筑活动相比,退役将涉及材料的泥土和拖运以及较少的劳动时间(Chapman等人)(Chapman等人。2012-TN2644)。
摘要:热膨胀是长度计量中导致不确定性的主要原因。NIST 设计了一种基于容器的折射仪,其目标是在测量氦折射率时将不确定度控制在 10 − 6;就环境条件下的折射率而言,精度目标是折射率为 3 × 10 − 11。为了达到这种精度水平,0 的长度。5 m 气室需要在 100 nm 以内。当在 20 ◦ C 下用坐标测量机测量容器长度时,这是可以实现的。但是,折射仪将在水和镓的热力学已知固定点附近运行,分别在 0 ◦ C 和 30 ◦ C 附近。容器由熔融石英玻璃制成,其标称热膨胀系数为 0。4 ( µ m/m)/K。因此,要将尺寸计量的精度扩展到20 ◦ C到水的三相点,需要知道熔融石英玻璃的热膨胀系数在10 (nm/m)/K或2 .5 %的范围内。描述了一种测量熔融石英玻璃热膨胀系数的方法。测量原理是监测法布里-珀罗腔谐振频率随温度变化的变化;法布里-珀罗腔由熔融石英玻璃制成。测量中的标准不确定度小于0 .6 (nm/m)/K,或0 .15 %。性能的限制可以说是反射相移温度依赖性的不确定性,因为薄膜涂层的热光系数和热膨胀系数都无法可靠地知道。但是,其他几个不确定性因素的数量级也相同,因此任何性能改进都需要付出巨大努力。此外,对三个不同样品的测量表明,材料的不均匀性导致熔融石英的有效热膨胀系数存在差异;样品间热膨胀的不均匀性比单个样品的测量不确定度高 17 倍。
应用 • 熔炉的热面和备用衬里 • 附加绝缘: - 耐火砖和绝缘耐火砖 - 使用夯土衬里或模板的耐火整体件 • 烟道和烟囱衬里、热气管道衬里 • 热锭模盖 • 与熔融铝直接接触的应用 • 消费电器,如烤箱、热水器、储热器。 • 垫圈、密封件、膨胀节 • 熔融金属槽盖 • 个人防护隔热罩 • 热处理设备
钢合金作为经济的遏制材料候选材料,易受到 TES 系统中熔融介质的热腐蚀和氧化 [3-7, 9-22]。碳酸盐、氯化物-碳酸盐和氯化物-硫酸盐的熔融共晶混合物也被视为具有高热容量和能量密度的 PCM 候选材料 [3, 23]。腐蚀产物的溶解度和合金的氧化电位是影响遏制材料和熔融介质之间兼容性的关键因素 [24]。在钢合金中,材料表面保护性氧化物的形成可提高抗腐蚀能力,其中材料化学、温度和气氛决定了结垢速率 [25, 26]。然而,在熔盐中,由氧化铬等成分组成的保护层通常会通过熔剂溶解到盐混合物中。一旦氧化膜被去除,暴露金属中最不活泼的成分就会受到侵蚀 [24, 27, 28]。例如,铁基合金在 450°C 下的 ZnCl 2 -KCl 中的腐蚀是由于氧化膜的分离和剥落造成的[29]。