•产生高温并驱除易燃电解质和易燃气体。•易燃气体包括碳氢化合物和高浓度的氢气•在抑制开放火焰的同时,持续热失控的传播继续,气体爆炸是可能的。•在发生通风气体爆炸的情况下,货物舱衬里可能会受到损害,从而导致抑制剂泄漏,并且剂量浓度的降低将使火力加剧。
随着燃烧涡轮机的热效率的增加,涡轮发电机产生的电力总燃烧的燃料较小,并且CO 2和其他空气排放量相应减少。效率据报道是转化为电力的燃料中能量的百分比。1热率是表达效率的另一种常见方法。热率表示为英国热单元(BTU)或千焦耳(KJ)的量,以产生千瓦时的电力(kWh)。较低的热率与更有效的发电率有关。效率提高可以以不同的格式表示;它们可能被报告为总体效率的绝对变化(例如,从40%变为42%,代表2%的绝对增加)。它们也可以作为效率的相对变化表示(例如,从40%变为42%会导致燃料使用降低5%)。效率的相对变化是最一致的方法,因为它对应于热率相同的变化。对于大多数燃烧涡轮的EGU,随着热率的降低,燃料提取相关的环境影响以及对冷却水生态系统的相关热影响的相应减少。2
背景 ARBEC FOREST PRODUCTS INC. 产品 FORESTIERS ARBEC INC. (ARBEC) 购买了位于米拉米奇市的定向刨花板 (OSB) 工厂,该工厂原由 Weyerhaeuser Company Limited 拥有和经营。OSB 工厂于 1996 年投入使用,并以 Eagle Forest Products 的名义开始运营。Weyerhaeuser 随后于 2000 年 6 月购买了该工厂,并运营该设施直到 2007 年 1 月工厂因市场状况而关闭。ARBEC 于 2012 年秋季开始运营 OSB 工厂。米拉米奇的工厂生产尺寸为 4 英尺 x 8 英尺的 OSB 板。OSB 板主要用于住宅建筑。面板用于墙面护套、屋顶和结构地板。米拉米奇生产的大部分产品销往加拿大和美国。该工厂约有 150 名员工。工艺描述 简介 在米拉米奇的 OSB 工厂,所有木材都以圆木的形式通过卡车运送到现场,通常长度为 8 英尺。圆木通过两个自清洁闭环热池之一进入工厂,开始制造过程。热池的作用是在剥皮前松开木材上的树皮,并在冬季解冻冻结的原木。从热池出来的木材进入两个环形剥皮机之一,以去除原木上的树皮。然后,在三个刨片机之一中,将原木切成大约 0.03 英寸厚的小木条。木条在三个单程干燥机之一中干燥,其中刨片的含水量从 75 - 100 % 降低到 1.5 - 3 %。干燥的刨片进入两个大直径滚筒混合机之一,在那里与乳化蜡和液态树脂混合。然后,薄片在成型机上被排列成层,然后在高压和高温下压制以形成定向刨花板。然后将板切割成合适的尺寸,包装和储存,然后运送给客户。压机、热池和一般建筑物的热量是由炉中木材残余物的燃烧产生的。下面提供了热能系统、干燥机和空气污染控制设备的更详细描述。热能系统剥皮过程中产生的所有树皮和湿木材残余物都作为燃料在燃木炉中燃烧,为工厂产生热量。燃木炉由 GTS Energy Systems 制造,热额定值为 8650 万 kJ/小时(8200 万 BTU/小时)。轻油(#2 燃料油)用作 GTS 炉的备用燃料。燃木炉燃烧室内的温度保持在 450°C 至 1000°C(842°F 至 1832°F)之间。来自燃烧室的热气体通过一个系统来加热加热线圈内的导热油。加热后的导热油被泵送到各种
这些解决方案是什么?M.G. :Dalkia将在数字创新和提供能源经理的支持下,为我们的生产和消费提供专用,优化的管理,以帮助我们在500个网站中的每个站点中调整资源。 所有能量混合溶液(热泵,光伏等) 适应了遗址,遗产,用途以及已意识到生态活动的社区,将使我们能够实现目标。 我们方法的另一个值得注意的方面是在孤立地点上大量部署木材燃热系统,因为该解决方案已按照先前的合同成功进行了测试。 具有Dalkia的专业知识,并且由于我们社区中的集体参与,脱碳建筑是可能的。M.G.:Dalkia将在数字创新和提供能源经理的支持下,为我们的生产和消费提供专用,优化的管理,以帮助我们在500个网站中的每个站点中调整资源。所有能量混合溶液(热泵,光伏等)适应了遗址,遗产,用途以及已意识到生态活动的社区,将使我们能够实现目标。我们方法的另一个值得注意的方面是在孤立地点上大量部署木材燃热系统,因为该解决方案已按照先前的合同成功进行了测试。具有Dalkia的专业知识,并且由于我们社区中的集体参与,脱碳建筑是可能的。
2.2 供热管道传热动力学模型供热管道动态特性是指同一管道内热水入口温度和出口温度与时间的耦合关系,是描述热网蓄热特性的关键。在管道内,入口处的水温变化会缓慢延伸到出口,温度传递的延时基本与热水流过管道的时间相同。另外,由于管道内热水温度与环境温度存在差异,在流动过程中会有热量损失,导致水温下降。供热管道横截面积如图3所示,其中Δt为调度周期长度。
能源效率是降低水泥过程和遏制碳排放的最有效措施之一。提高能源效率的干预区域与热能收集有关。水泥制造工艺需要大量的热量,但由于能量转化的效率低下,几乎40%的它变成了排气热,但没有开发。这代表了废热恢复(WHR)的重要机会,可以极大地提高整体效率。根据Persson等人的分析。在KC ORC关于欧洲能源密集型行业的研究中,热能仅用于总能量输入的25%,这意味着目前浪费了从初级燃料中获得的热能的75%。1分析确定了1175个欧洲工业地点,其废热电位超过50 mW。通过在本研究中映射的水泥厂中恢复估计的废热,可以使用有机兰金循环(ORC)技术产生大约447.3 MW的电力。
我们讨论了减少重型车辆 (HDV) 化石燃料排放的各种方案,包括电池电动汽车 (BEV)、电动道路系统 (ERS) 以及通过氢燃料电池或电子燃料实现的间接电气化。我们使用开源容量扩展模型和基于路线的卡车交通数据,研究了在德国可再生能源占高比重的未来情景下,它们对电力部门的影响。对于可灵活充电且可进行车辆到电网运营的 BEV,电力部门成本最低,而对于电子燃料,成本最高。如果 BEV 和 ERS-BEV 没有得到最佳充电,电力部门成本会增加,但仍远低于氢能或电子燃料的情景。这是因为间接电气化的能源效率较低,这超过了潜在的灵活性优势。BEV 和 ERS-BEV 有利于太阳能光伏能,而氢能和电子燃料有利于风能并增加化石电力发电。结果在敏感性分析中仍然保持定性稳健。
散热器:固有块体材料特性 – 通常为铝或铜(散热器、液冷板、蒸气室) TIM2:半导体封装外部;θ T2 由材料电阻决定,该电阻包括块体值加上 (2) 接触电阻(外壳表面、散热器) 外壳(或盖子):固有块体材料特性 – 通常为镀镍铜* TIM1:半导体封装内部;θ T1-C 由材料电阻决定,该电阻包括块体值加上 (2) 接触电阻(芯片表面、盖子内表面);或者, TIM0:无盖半导体封装(“裸片”封装) 芯片:固有块体材料特性(Si、SiC、GaN、GaAs 等)
这项工作的一部分是在三次借调期间完成的:在德国亚琛工业大学矿物工程研究所 (GHI) 工作了两个半月;在葡萄牙科英布拉土木工程系结构工程可持续性与创新研究所 (ISISE) 工作了两个月;在奥地利莱奥本的 RHI-Magnesita 技术中心工作了两周。非常感谢我的借调导师和技术人员在借调期间和借调后给予的大力帮助。尽管存在设备问题、时间有限和疫情,但我还是取得了非常有趣的成果,有时甚至出乎意料。
ÖZ ................................................ .................................................. ................................vii