准备好新的爆炸性或爆炸性混合物时,有必要检查其爆炸特性,以确保它们与初步计算或参考文献值一致。可以使用爆炸加速传单(传单板测试或DAX)的速度分布的测量来表征新材料。与传统但过时的HESS或KAST测试不同,PDV允许直接测量关键参数,而无需与标准样本立即进行比较。可以使用爆炸加速的薄金属传单的初始速度来推断爆炸反应区的参数。此外,圆盘中的冲击回响引起的速度步骤也可以用于确定爆炸产物的等渗膨胀路径,这是爆炸加载过程数值建模的重要输入。轮廓后部的限制(“海岸”)速度对应于从爆炸产物传递到传单的能量 - 爆炸物的加速能力。可以计算出特征性的Gurney速度。
为了努力满足可持续发展原则所确定的要求,回收高能/爆炸物 (HEM) 的问题在过去十年中一直是关注的焦点。据估计,每年从军用仓库中回收的过期或退役爆破炸药、火药和火箭推进剂的数量达数千吨 [1-6]。2005 年,乌克兰的 HEM 数量估计为数十万吨 [7],而在阿尔巴尼亚,HEM 的数量如此之多,以至于其处置需要国际支持 [8]。在所有储存多余 HEM 的地方,都存在不受控制的激活和爆炸的危险。1950 年至 2013 年间,阿尔巴尼亚报告了 26 起意外爆炸 [9],原因是外部刺激(例如机械、热、电或化学 - 例如自催化分解)作用于 HEM [2, 3, 5, 10-27]。采矿业中使用的 HEM 成分不仅因高能工艺的风险而具有危险性,而且由于其刺激性、致癌性和/或毒性,还会对健康和生命造成危害 [28- 30]。HEM 爆炸产物对环境的影响也是一个严重的问题 [3-5、10、31-33]。
大型陨石碰撞引起的地球轴变化 GALLANT 1 评估了大型陨石碰撞引起的地球轴变化。但他估计的位移比我十年前发表的更大,而且最近略有修改。他计算出一颗朱诺大小的陨石(直径约 190 公里)以 20 公里/秒的速度碰撞将导致 0° 45 的轴位移。但是,通过使用地球角动量与碰撞体动量矩相互作用的正确标准,实际位移只有大约 0° 02'。事实上,一个更大的物体,比如直径 320 公里,以 72 公里/秒的最大可能速度碰撞,尽管能量是朱诺示例的 75 倍,也只会产生 0° 32' 的轴位移。表 1 给出了与地球和月球碰撞的最大影响的例子。假设碰撞路径与垂直于赤道的大圆相切,密度为 3.5,速度为 72 公里/秒,爆炸产物反向碰撞引起的完全反弹最大程度地近似于两倍动量交换。在这些绝对最佳的条件下,轴位移为反正切(2m VR:地球的角动量),其中 m V 是陨石的动量,R 是地球或月球的半径。当假设碰撞与赤道相切时,轴变化为零,但两个动量会导致自转速度的变化。月球的等效变化要大得多,它们表明,只要有耐心和时间,人类就有可能在没有卫星和登陆月球的情况下看到整个表面。它们也与月球形状的考虑有关。