将父本置于各种环境操纵之下表明,在雄性对后代的投资几乎仅限于精子的物种中,父系效应也可能非常重要。然而,父系效应是否也具有遗传成分(即父系间接遗传效应 (PIGE))在此类物种中仍不清楚,这主要是因为在区分基因的间接效应和直接效应方面存在方法学困难。然而,PIGE 可能很重要,因为它们有能力促进进化变化。在这里,我们使用果蝇遗传学来构建一个育种设计,可以对几乎完整的单倍体基因组(超过 99%)进行 PIGE 测试。使用这种技术,我们估计了四个种群中由于 PIGE 导致的雄性寿命差异,并将其与总父系遗传差异(父系间接和直接遗传效应之和)进行比较。我们的结果表明,总父系遗传差异的很大一部分来自 PIGE。对从单个种群随机抽取的 38 个单倍体基因组的筛选表明,PIGE 还会影响种群内寿命的变化。总之,我们的结果表明,PIGE 可能构成了表型变异的一个未被充分重视的来源。
将父本置于各种环境操纵之下表明,在雄性对后代的投资几乎仅限于精子的物种中,父系效应也可能非常重要。然而,父系效应是否也具有遗传成分(即父系间接遗传效应 (PIGE))在此类物种中仍不清楚,这主要是因为在区分基因的间接效应和直接效应方面存在方法学困难。然而,PIGE 可能很重要,因为它们有能力促进进化变化。在这里,我们使用果蝇遗传学来构建一个育种设计,可以对几乎完整的单倍体基因组(超过 99%)进行 PIGE 测试。使用这种技术,我们估计了四个种群中由于 PIGE 导致的雄性寿命差异,并将其与总父系遗传差异(父系间接和直接遗传效应之和)进行比较。我们的结果表明,总父系遗传差异的很大一部分来自 PIGE。对从单个种群随机抽取的 38 个单倍体基因组的筛选表明,PIGE 还会影响种群内寿命的变化。总之,我们的结果表明,PIGE 可能构成了表型变异的一个未被充分重视的来源。
天使综合征 (AS) 是一种由大脑中泛素连接酶 E3A (UBE3A) 基因表达缺失引起的神经遗传疾病。UBE3A 基因在脑神经元中是父系印记。AS 的临床特征主要是由于大脑中母系表达的 UBE3A 缺失所致。大脑中存在父系 UBE3A 的健康拷贝,但被长非编码反义转录本 (UBE3A-ATS) 沉默。在这里,我们证明人工转录因子 (ATF-S1K) 可以在成年小鼠天使综合征 (AS) 模型中沉默 Ube3a-ATS 并恢复父系 Ube3a 的内源性生理表达。向尾静脉单次注射表达 ATF-S1K 的腺相关病毒 (AAV) (AAV-S1K) 即可实现全脑转导,并将神经元中的 UBE3A 蛋白恢复至野生型蛋白的 25%。ATF-S1K 治疗对靶位点具有高度特异性,在 AAV-S1K 给药 5 周后未检测到炎症反应。AAV-S1K 治疗 AS 小鼠在探索性运动(涉及粗大和精细运动能力的任务)中表现出行为恢复,类似于 AS 患者的低步行和速度。单次注射 AAV-S1K 治疗 AS 的特异性和耐受性表明 ATF 可作为 AS 的一种有前途的转化方法。
23 多梳抑制复合物-1 沉积的 H2AK119ub1 在体细胞中启动兼性异染色质形成过程中起着关键作用。我们在此评估精子衍生的 H2AK119ub1 对胚胎发育的贡献。我们发现,在非洲爪蟾中,H2AK119ub1 在精子发生过程中以及胚胎发育早期都存在,这突出表明了其在精子向胚胎传递表观遗传信息方面发挥的作用。在注射到卵子之前,用 H2AK119ub1 去泛素化酶 USP21 对精子进行体外处理会导致与基因上调相关的发育缺陷。精子 H2AK119ub1 编辑会破坏卵子因子介导的父系染色质重塑过程。它导致复制后 H2AK119ub1 在基因组重复元件上积累,而不是在 CpG 岛上。精子表观基因组编辑引发的复制后 H2AK119ub1 分布的这种变化导致 USP21 处理精子产生的胚胎中 H2AK119ub1 基因失调。我们得出结论,精子来源的 H2AK119ub1 指导卵子因子介导的父系染色质表观遗传重塑,是胚胎发育所必需的。
摘要:精子的 DNA 甲基化组是由一种独特的表观遗传重编程引起的,这种重编程对于染色质压缩和保护父系遗传至关重要。尽管公牛精液广泛用于人工授精 (AI),但人们对牛精子表观基因组知之甚少。本综述的目的是根据在人类和模型物种中积累的知识,综合最近对公牛精子甲基化组的研究。我们将讨论精子特异性 DNA 甲基化特征及其潜在的进化影响,特别强调低甲基化区域和重复元素。我们将回顾最近与生育力和年龄相关的公牛精子甲基化组的个体间变异性和个体内可塑性的例子。最后,我们将讨论受精后的父系甲基化组重编程,以及可能涉及表观遗传的机制,并提供一些改变牛重编程动态的干扰的例子。由于人工智能公牛的选择与其基因型密切相关,我们还将讨论序列多态性和 DNA 甲基化之间的复杂相互作用,这既代表了解决 DNA 甲基化在塑造表型中的作用的困难,也代表了更好地理解基因组可塑性的机会。
您的结果分为三个不同的部分。第一部分(表格和饼图)描述了您每个地区的整体祖先贡献,以占您整个祖先的百分比表示。第二部分深入介绍每个地区,提供有关该地区国家的一些有趣事实。最后一部分描述了您的母系和父系(仅适用于男性),分别基于您的线粒体 DNA 和 Y 染色体。每个地区都被赋予一种特定的颜色,这与它们在您的报告中代表的特定祖先贡献的颜色一致。
使用 CRISPR/Cas9 进行神经遗传疾病的基因编辑面临难以穿过血脑屏障、渗透性有限和治疗窗口狭窄的挑战。虽然改良的腺相关病毒 (AAV) 克服了其中一些障碍,但由于 Cas9 蛋白的长期存在,它们的免疫原性和更高的脱靶效应风险限制了它们对人类神经遗传疾病的转化价值。为了解决这个问题,我们开发了一种创新的非病毒递送工具,使用与 Cas9 蛋白和 sgRNA 结合的化学修饰核糖核蛋白 (RNP) (cRNP-Cas9/sgRNA,cRNPcg)。由于其尺寸小 (12um),cRNPcg 能够有效渗透到大脑中的神经元细胞中,而瞬时 Cas9 蛋白大大降低了脱靶效应的风险。我们在体外和体内测试了 cRNPcg 对 Angelman 综合征 (AS) 的疗效,这是一种由神经元和母体特异性 UBE3A 基因表达缺陷引起的神经发育障碍。父系染色体中 UBE3A 的抑制表达由父系表达的非编码 UBE3A 反义转录本 (UBE3A-ATS) 介导。通过反义寡核苷酸 (ASO) 灭活 UBE3A-ATS 在正在进行的 1/2 期临床试验中显示出积极的临床效果。然而,ASO 的短暂作用需要每月鞘内注射,这对作为标准临床治疗方法提出了挑战。我们设计的 cRNPcg 系统可选择性地灭活 Ube3a-ATS 表达,并可能通过单次治疗实现永久性治疗效果。使用 Ube3a-YFP 报告小鼠,我们观察到高基因编辑效率(>75% 靶向细胞)和广泛的脑渗透。我们给新生儿 (P1-2) 和 P21 AS Ube3 a m-/p+ 模型鞘内注射了 cRNPcg,观察到 Ube3a-ATS 显著降低,并且 Ube3a 重新激活至正常水平的 30%,遍及皮质、海马和小脑。因此,这种治疗显著改善了多个行为领域,包括运动功能、焦虑样行为、学习和记忆,并且还延长了成年 AS Ube3 a m-/p+ 小鼠化学诱发的肌阵挛和强直性癫痫发作的潜伏期。重要的是,我们没有观察到与 cRNPcg 相关的任何急性或慢性毒性。此外,我们发现 cRNPcg 有效地重新激活了 AS 患者 hIPSC 衍生的神经祖细胞中父系染色体上的 UBE3A 表达,这些神经祖细胞存在 15q11-q13 的大量母系缺失。总之,我们的结果表明,cRNPcg 是一个将 CRISPR/Cas9 基因编辑传递到大脑的创新平台,具有广泛的应用和治疗许多其他神经遗传疾病的潜力。
摘要。高等植物的雄性不育现象是除雄蕊早熟、雌蕊早熟、异花柱(柱头不同)和自交不亲和性之外,迫使外部授粉的进化条件机制之一。由于消除了耗时且成本高的母系去雄过程,雄性不育系成为包括玉米在内的许多植物物种杂交品种种子生产中令人感兴趣的对象。使用雄性不育系进行杂交品种种子生产需要建立在不同环境下雄性不育的母系和具有育性恢复基因的合适父系。本文总结了玉米雄性不育和育性恢复遗传学方面的研究成果。
雄性蚊子具有生育能力,因此可以交配并产生可存活的后代。这种蚊子经过基因改造后主要产生雄性后代(实验室中高达 95%)。雄性蚊子不会叮咬,因此不会传播疾病。由于这种蚊子不携带基因驱动技术(50% 的后代通过正常遗传携带转基因),在获得批准的野外释放中,这种基因改造只会传递有限的几代,然后就会从种群中消失,大概在两个雨季内。雄性蚊子具有父系遗传性,这意味着携带基因改造的雄性会生出大多数雄性后代,而与未携带基因改造的雄性交配的雌性会拥有 50% 雌性和 50% 雄性的正常性别比例。
a. DNA 序列不变。这意味着 DNA 修复(如缺失、插入或染色体重排)造成损伤的可能性很小。b. 表观遗传变化极少(如果有的话)可能具有遗传性。因此,任何风险都应仅限于接受编辑的个体,而不会影响未来的后代。即使早期胚胎或其他生殖细胞正在接受表观遗传编辑,情况也是如此。即使是“亲本印记基因”(由于表观遗传机制,母系或父系等位基因通常被沉默的基因),也会在生殖细胞发育过程中重置。c. 表观遗传变化可能难以检测。虽然这种变化是短暂的,但可能会产生持久的生理影响。也就是说,这些变化可能会在用于进行编辑的工具甚至编辑本身都不再存在之后很长时间仍然存在。例如,抑制在胚胎或出生后发育过程中对于确定特定细胞类型至关重要的特定基因的活性,将对该细胞类型通常所在的组织或器官的功能产生长期影响