在受控条件下,为材料和设备(包括但不限于武器系统组件)的开发、质量保证或可靠性而进行的户外测试和实验。涵盖的行动包括但不限于燃烧测试(例如电缆耐火性或燃料燃烧特性测试)、冲击测试(例如使用指定并经常用于此目的的土堤或混凝土板进行的气动喷射器测试)或跌落、穿刺、浸水或热测试。涵盖的行动不涉及源、特殊核或副产品材料,但根据适用标准制造的包含源、特殊核或副产品材料的封装源可用于非破坏性行动,例如探测器/传感器开发和测试以及急救人员现场培训。B3.15 使用纳米级材料的小规模室内研究和开发项目
CS4192 是单片 BiCMOS 集成电路,用于将来自微处理器/微控制器的 10 位数字字转换为互补直流输出。直流输出驱动通常用于车辆仪表板的空心仪表。10 位数据用于直接线性控制仪表的正交线圈,在仪表的整个 360° 范围内具有 0.35° 分辨率和 ± 1.2° 精度。来自微控制器的接口是通过串行外设接口 (SPI) 兼容串行连接,使用高达 2.0 MHz 的移位时钟速率。数字代码与所需的仪表指针偏转成正比,被移入 DAC 和多路复用器。这两个块提供切向转换功能,可将数字数据转换为所需角度的适当直流线圈电压。在 45 ° 、135 ° 、225 ° 和 315 ° 角处,切向算法在仪表运动中产生的扭矩比正余弦算法大约高 40%。这种增加的扭矩减少了由于这些临界角度下的指针下垂而导致的误差。每个输出缓冲器能够为每个线圈提供高达 70 mA 的电流,并且缓冲器由公共 OE 启用引脚控制。当 OE 变为低电平时,输出缓冲器关闭,而芯片的逻辑部分保持通电并继续正常运行。OE 必须在 CS 下降沿之前处于高电平才能启用输出缓冲器。状态引脚 (ST) 反映输出的状态,并且在输出被禁用时处于低电平。串行仪表驱动器具有自我保护功能,可防止发生故障。每个驱动器均受到 125 mA(典型值)过流保护,而全局热保护电路将结温限制在 170°C(典型值)。只要 IC 保护电路检测到过流或过温故障,输出驱动器就会被禁用。驱动器保持禁用状态,直到 CS 上出现下降沿。如果故障仍然存在,输出驱动器将再次自动禁用。
高维纠缠的光状态为量子信息提供了新的可能性,从量子力学的基本测试到增强的计算和通信效果。在这种情况下,自由度的频率将鲁棒性的资产结合在一起,并通过标准的电信组件轻松处理。在这里,我们使用集成的半导体芯片来设计直接在生成阶段的频率键入光子对的波函数和交换统计,而无需操作后。量身定制泵束的空间特性,可以产生频率与年轻相关,相关和分离状态,并控制光谱波函数的对称性,以诱导骨气或费米子行为。这些结果是在室温和电信波长下获得的,开放有希望的观点,用于在整体平台上使用光子和光子的量子模拟,以及利用反对称高度高维量子状态的通信和计算方案。
india.org/assets/data/portalFlowParticipant.pdf • 研讨会编号:1614008231 • 标题:SoC 上的 AI • 协调员:Sumit J Darak • 学院:印度理工学院德里分校 • 注册免费,但席位数量有限
功率:CV 2 fx(数据量)问题 ● 将数据从像素移动到外围的总功耗:1 pJ/bit(~ 5mm 距离) ● 将数据移出芯片的总功耗:> 0.1 nJ/bit 最小化 C,V ● 3D 集成(高密度、低电容互连) ● 低压信号减少数据 ● 通常仅对探测器上的电子设备进行零抑制 – 适用于稀疏数据 HL LHC:更高的粒度、更高的占用率、更高的精度 => 需要新方法
片上网络概念是当前和未来片上系统 (SoC) 复杂性的直接产物。事实上,同一芯片的内核数量成倍增加会导致内部信号通信问题。传统总线无法管理过多内核和过多信号。此外,这些信号在功能(控制、数据和地址)、速度(内部内核的不同吞吐量)方面可能是异构的,我们在这里讨论的是多个时钟域,或者最重要的是优先级。不幸的是,经典的总线架构(如多主多从配置)无法有效应对此类系统的众多复杂性和异构性。在 21 世纪,Luca Benini 和 Giovanni De Micheli [1] 引入了 NoC 范式。由于担心未来的 SoC 及其复杂性可能无法与传统总线完全兼容,许多研究人员对 NoC 进行了各种研究 [2- 12]。有关该领域的研究可分为 3 个主轴或级别,即网络、连接和系统级 [13]。通过提出一种新的架构,我们可以将我们的工作归类为网络级 [14, 15]。但是,当我们稍后讨论策略时,我们将解释这也与连接和系统级别有关。本文是在我们最近对使用 AFDX 协议作为片上网络进行调查之后发表的 [16]。事实上,我们已经解释了我们的策略以及 AFDX 协议对我们设计 NoC 的启发。在本文中,我们概述了所需的NOC架构(开关和最终系统),并在此工作阶段介绍快捷方式的想法。
摘要:随着晶体管的深度扩展和复杂的电子信息交换网络的发展,超大规模集成电路(VLSI)对性能和功耗提出了更高的要求。为了满足海量数据处理的需求和提高能效,仅提高晶体管的性能是不够的。如果数据线的容量没有相应增加,超高速微处理器也是无用的。同时,传统的片上铜互连已达到其电阻率和可靠性的物理极限,可能不再能跟上处理器的数据吞吐量。作为潜在的替代品之一,碳纳米管(CNT)已引起人们的广泛关注,有望成为未来新兴的片上互连,并有望探索新的发展方向。本文重点研究了当前片上互连的电气、热学和工艺兼容性问题。我们从不同的互连长度和硅通孔(TSV)应用的角度回顾了基于CNT的互连的优势、最新发展和困境。
计算机必须被安置在一个房间里,留给其他计算机的空间很小的时代已经一去不复返了。甚至,存储设备过去也非常笨重,存储信息的能力非常小。同样,计算能力也很小。这要归功于科学技术的最新发展。1-5 半导体行业在空间、高计算能力、更快响应等方面经历了根本性的变化。因此,随着超大规模集成的出现,当前的手机可以完成几乎所有笔记本电脑或计算机可以执行的任务,并具有增强的计算能力。这是因为微型化的巨大进步。该领域取得了如此大的进步,以至于开发人员已经能够制造出比拇指尖还小的微型计算机。与此同时,小型化导致了微型传感器的实现,这些传感器具有灵活性和可穿戴性。然而,需要注意的是。如果计算机和电池没有小型化,这是不可能的。因此,出现了一个称为智能尘埃应用的领域,它基本上包括尺寸较小的微电子设备。另一个重要特征是它们的尺寸小如灰尘。这一方向的兴起催生了许多生物相容性传感器。
呼吸保护:如果暴露于灰尘,则必须佩戴呼吸保护(呼吸滤光罩P1(EN 143))。使用根据NIOSH(US)或CEN(EU)等政府标准测试和批准的呼吸口罩和组件。眼睛 /面部保护:如果灰尘曝光,则使用安全眼镜,并根据DIN(EN 166)进行集成侧保护罩。仅使用根据政府标准(例如NIOSH(US)或CEN(EU))测试和批准的安全眼镜或其他眼部保护设备。手保护:建议使用符合指令的89/686/EWG和欧洲标准EN 374的安全手套。建议的安全手套,例如硝酸橡胶,厚度为0.11mm,突破性时间为480分钟。身体保护:没有其他要求。工作场所卫生:避免吸入灰尘。
聚维酮 K-90、聚维酮 K-30、预胶化淀粉、硬脂酸镁、羟丙甲纤维素、二氧化钛、聚乙二醇 适应症和临床使用 二甲双胍片(盐酸二甲双胍)适用于改善有反应性、稳定、轻度、不易发生酮症的 2 型糖尿病成年患者的血糖控制,作为适当饮食管理、运动和减肥的辅助手段,或当胰岛素治疗不合适时使用。二甲双胍片可单独使用或与其他抗糖尿病药物联合使用。 儿科(< 18 岁):尚未对 18 岁以下患者研究盐酸二甲双胍的安全性和有效性。二甲双胍片不应用于儿科患者(参见警告和注意事项、特殊人群、儿科)。老年病学(> 65 岁):盐酸二甲双胍的临床对照研究没有纳入足够数量的老年患者,因此无法确定他们与年轻患者的反应是否不同。盐酸二甲双胍主要通过肾脏排泄,由于肾功能不全的患者发生严重药物不良反应的风险更大,因此二甲双胍片只能用于肾功能正常的患者(见禁忌症和警告和注意事项、肾脏)。由于衰老与肾功能下降有关,因此老年患者应谨慎使用二甲双胍片。80 岁以上的患者不应开始二甲双胍片治疗,除非肌酐清除率测量结果表明肾功能未下降(见警告和注意事项、内分泌和
