1联邦科学中心“全俄的研究与技术家禽研究所”,俄罗斯科学院,塞尔吉耶夫·波萨德,莫斯科,莫斯科oblast 141311,俄罗斯2联邦州立州预算高等教育的预算教育机构”彼得斯堡国家农业大学”,普希金,圣彼得堡,196601,俄罗斯3 Biotrof LLC,普希金,普希金,圣彼得堡,196602,俄罗斯4 K. I. Skryabin莫斯科州兽医医学和生物技术学院王国6英国布里斯托尔BS4 2RS的Vitagene and Health Research Center 7,Trakia University,Trakia University兽医学系微生物学和生物化学系,6000 SATAA ZAGORA,保加利亚8号,保加利亚8动物营养系,农业与环境科学系,Szent Istvan Istrant,Houstrant Istvan istvan University,H-2103 G-2103 G.杜布罗斯克(Dubrovitsy),波多尔斯克(Podolsk),莫斯科牛皮纸研究中心,俄罗斯142132,俄罗斯
摘要:功率变压器对于最常见的电网的可靠性至关重要,该电网最常见于牛皮纸隔热并浸入矿物油中,其中纸张的老化状态主要与变压器的运行寿命相关。聚合度(DP)是评估绝缘纸的老化状况的直接参数,但是现有的DP测量通过粘度方法具有破坏性和复杂性。在本文中,引入了Terahertz时域的表格(THZ-TDS),以达到对绝缘纸DP的快速,无损的检测。绝缘纸的吸收光谱表明,在1.8和2.23 THz处的特征峰区都表现出与DP的对数线性定量关系,并且通过对不同类型的绝缘纸进行上述关系来确认它们的普遍性。傅立叶变换红外光谱(FTIR)分析和分子动力学建模进一步表明,1.8和2.23 THz分别与水 - 纤维素氢键强度和无定形纤维素的生长有利相关。本文证明了将THZ-TDS应用于绝缘纸中DP的无损检测并分配了特征吸收峰的振动模式的生存能力。
ABS丙烯腈丁二烯 - 苯乙烯ABS。绝对吸收。吸收ACGIH美国政府工业卫生学家ACN丙烯腈法案。主动ADI可接受的每日摄入量(FAO/WHO)ADR不良药物反应ADSORP。吸附作业。农业agrichem。农业化学。农化学A.I.主动成分AKD烷基酮二聚体Alc。酒精,Amer。 美国AMTS。 含量为Anhyd。 无水的ANSI美国国家标准研究所AOX可吸附有机卤素AP烷基苯酚APE乙醇苯酚乙氧醇APHA APHA美国公共卫生协会应用程序。 应用程序AQ。 Asa Asa丙烯酸 - 丙烯酸 - 丙烯酸乙烯烯;烷基琥珀酸酐ASTM ASTM美国测试和材料学会Ath氧化铝三氢ATM大气 原子重量自动签名。 自动签名辅助。 辅助利用。 可用的AVG。 平均A.W. 原子量batf酒精,烟草和枪支(美国)BDG丁基Diglycol BGA BGA联邦共和国德国卫生部 认证BHA丁基化的羟基烷硅烷BHT丁基化羟基甲苯生物化学。 生化生物处理。 可生物降解的BKP漂白牛皮纸大厦。 建筑Blk。 黑色BMC散装成型化合物BOD生化氧需求BP British Pharmacopeia B.P. 沸点br丁二烯橡胶,polybutadienes b&r ball&ring br。,brn。 棕色酒精,Amer。美国AMTS。含量为Anhyd。无水的ANSI美国国家标准研究所AOX可吸附有机卤素AP烷基苯酚APE乙醇苯酚乙氧醇APHA APHA美国公共卫生协会应用程序。应用程序AQ。Asa Asa丙烯酸 - 丙烯酸 - 丙烯酸乙烯烯;烷基琥珀酸酐ASTM ASTM美国测试和材料学会Ath氧化铝三氢ATM大气原子重量自动签名。自动签名辅助。辅助利用。可用的AVG。平均A.W.原子量batf酒精,烟草和枪支(美国)BDG丁基Diglycol BGA BGA联邦共和国德国卫生部认证BHA丁基化的羟基烷硅烷BHT丁基化羟基甲苯生物化学。生化生物处理。可生物降解的BKP漂白牛皮纸大厦。建筑Blk。黑色BMC散装成型化合物BOD生化氧需求BP British Pharmacopeia B.P.沸点br丁二烯橡胶,polybutadienes b&r ball&ring br。,brn。棕色
尽管已经研究了KL数十年来,但在过去几年中,已经完成了有关其结构的重要研究。9 - 13牛皮纸制浆过程对木质素结构产生了广泛的修饰:醚间链接(例如β-O-4,最突出的链接)被损坏,新键是通过在解聚过程中产生的反应性物种的凝结而形成的。后者主要是碳 - 碳键,比天然醚键更稳定。这意味着KL不能轻易地解散,这几乎没有兴趣产生小酚类构件。在这种情况下,在材料应用中,KL作为聚合物的价值可能是最有前途的。kl在脂肪族和酚类OH组中具有很高的功能,可以轻松修改以引入新的化学功能。由木质素制备的14,15个聚合物是交联的材料,即热衣材料。这类聚合物的主要抽签是交联可防止材料熔化,从而使其无法像热塑性塑料一样机械地重塑或回收。在循环生物经济的背景下,它强烈限制了其寿命终止管理的选择。克服此限制的一种优雅方法是用动态的交联,所谓的共价适应性 - †电子补充信息(ESI)。请参阅doi:https://doi.org/ 10.1039/d4gc00567h
木质素是产生生物质芳香族化合物的最有前途的候选者。然而,挑战在于在轻度条件下木质素单体之间的C键裂解,因为这些键具有高解离能。电化学氧化允许轻度切割C -C键,被认为是一种有吸引力的解决方案。为了在木质素的价值中实现低能消耗,使用高效的电催化剂是必不可少的。在这项研究中,开发了一种精心设计的催化剂,该催化剂由掺杂二氧化镍(Oxy)氢氧化物的钼二硫化物异质结的精心化催化剂。在高价状态下钼的存在促进了丁基氢过氧化物的吸附,从而导致临界自由基中间体的形成。此外,掺杂掺杂的掺杂掺入镍的电子结构,从而导致较低的能屏障。结果,异质结催化剂在木质素模型化合物中裂解Cα -Cβ键的选择性为85.36%,在环境条件下达到了93.69%的底物转换。此外,电催化剂解聚了有机溶质木质素(OL)的49.82 wt%的可溶性级分,导致高达13 wt%的芳族单体的产率。很明显,还使用工业牛皮纸木质素(KL)证明了制备的电催化剂的有效性。因此,这项研究提供了一种实施木质素精炼中电催化氧化的实用方法。
为美好未来做好准备 SCA 的业务基于安全、抢手且稀缺的资源——森林,以及一个高度整合的价值链,其中每个环节都相互加强,而总和创造的价值大于每个单个环节。这就是我们最大化每棵树的经济和气候效益的方式。近年来,我们进行了一系列战略投资,以加强价值链并提高我们在优先产品领域的生产能力。这些投资在通货膨胀加剧之前完成,因此可以在既定的财务框架内完成。我们最大的投资是在 Obbola 的造纸厂进行的,我们将牛皮纸的生产能力从 450,000 吨提高到 725,000 吨。锯木厂运营的投资项目也已完成,包括 Bollsta 锯木厂的最先进的干选线和数字解决方案。这些投资提高了瑞典北部优质锯木原木的生产力,并增加了产量和价值收益。在这一年中,我们还决定收购 Gällö Timber AB 剩余的 50% 股份,从而成为锯木厂的唯一所有者。在哥德堡,启动了合资生物炼油厂的启动程序。该炼油厂将利用我们纸浆厂生产的妥尔油等产品制造液体生物燃料,用于航空业和其他用途。全年,我们还在系统地、深入地努力,逐步提高我们最近完成战略工业投资的工厂的产量。通过这些投资,我们正在为未来的经济复苏做好准备,并旨在满足对由经过认证和负责任管理的森林生产的原材料制成的气候智能型产品日益增长的需求。
Cow -pea(Vigna Unguiculata L.)是一种未充分利用的蔬菜豆类土著,主要在非洲种植和消费。但是,它在农业生产和消费方面的影响力在全球范围内已扩大。这种有弹性的作物以承受各种环境压力的能力而闻名,使其适合小型农民常用的边际作物生产系统。尽管cow豆具有对干旱的耐受性,但它对盐度胁迫和生物剂尤其敏感。对干旱的耐受程度在不同的品种之间有所不同,这需要进一步的研究才能开发出更多的弹性品种。不断变化的气候模式和相关的不确定性凸显了迫切需要繁殖更多弹性和生产性的牛皮品种。传统的植物育种技术产生了新的牛p,但是耕种的牛皮纸中的遗传多样性有限,为未来的传统繁殖工作带来了挑战。新的育种技术(NBT),包括基因编辑工具,单碱基对改变和DNA甲基化方法,为加速牛港改善提供了有希望的替代方法。然而,这种方法还面临着与组织培养中器官发生(OG)和体细胞胚发生(SE)成功相关的挑战。本综述研究了组织培养的挑战和进步,以提高cow豆生产力和针对非生物和生物胁迫的韧性。
摘要:各种行业对纤维素的需求不断增长,因此需要寻找传统树纤维素树的可持续替代品。这项研究调查了农业废物的潜力,例如稻壳,玉米壳,玉米稻草和高粱稻草,以作为造纸工业的可行纤维素纸浆来源,目的是遏制纸质森林砍伐。使用牛皮纸方法从上述农业废物中回收纤维素的研究,并以纸浆产量表征每种农业废物。还通过确定其kappa数,排水指数,灰分含量和纤维长度来表征所得的纸浆。也表征了每种农业废物产生的纸张。结果表明;高粱稻草产生的纤维素产量最高(46.6%),因此与传统的木材源相媲美,该木材的产量在18%至55%之间。此外,发现高粱稻草的果肉质量与市场上主要的树木来源的果肉相媲美。这些农业废物产生的论文的理化特性表明它们适合低强度和通用纸张应用。该研究表明,上述农业废物具有良好的前景,可以减轻与纸张生产相关的森林砍伐以及从其中产生的环境影响,因为其中一些废物能够产生纤维素浆,能够产生与当前用作饲料库存的传统树的质量和数量相当的质量和数量,这些质量可作为饲料库存供应造纸工业。关键字:纤维素纸浆,农业废物,纸,森林砍伐
摘要:用3D网络结构将纳米材料进行半导体表现出各种引人入胜的特性,例如电导,高渗透率和较大的表面积,这对吸附,分离和感应应用是有益的。然而,对这些材料的研究基本上受到其结构设计和电导率可调节性的跨量表有限的限制。为了克服这一挑战,提出了具有3D网络结构的热解纤维素纳米纤维纸(CNP)半导体。它的纳米 - 微型 - 宏反式尺度结构设计是通过结合碘介导的形态的延伸热解的结合以及在空间控制的纳米纤维纤维分散和造纸技术的空间干燥的结合,例如微型,牛皮纸,折纸,野生型和kirigami。通过温度控制的CNP的进行性进行性热解,从绝缘(1012Ωcm)到准金属(10-2Ωcm),通过温度控制的进行性渐进式热解(10-2Ωcm)广泛而系统地调节了该半导体的电传导,这超出了其他先前报道的Nananomeartials与3D网络。热解的CNP半导体不仅为从水蒸气选择传感器到酶促生物燃料电池电极的应用提供了可量身定制的功能,而且还提供了宏观设备配置的可伸缩和可穿戴应用的可设计性。这项研究提供了一种在结构和功能上设计的半导体纳米材料和全纳米纤维素半导体技术的途径。关键字:纳米纤维素,半导体,跨尺度结构设计,可调电性能,纸电子,定制的3D网络结构C
19. 9 ¾ x 13 英寸格式的《House Beautiful》…………………………………………............60 20. 1908 年《House Beautiful》读者 Anne Lancaster 所写故事的第一页。…..…..62 21. 1909 年四期《House Beautiful》主题版的封面。……………………………...........63 22. 合并与整合。………………………………………………………………………..64 23. 《Sunset》杂志封面。……………………………………………………………………..69 24. 第一期《House & Garden》封面。……………………………………………………………71 25. 《House & Garden》第一期的开篇。…………………………………………….72 26. 《House & Garden》内部一览。 ……………………………………………………………..73 27. 1901 年 12 月版《House & Garden》的牛皮纸页。………………............74 28. 1905 年的两张《House & Garden》封面……………………………………………………76 29. 《American Homes and Gardens》的封面。………………………………………………..78 30. 1904 年 10 月版《Country Life in America》的封面和开篇故事。………79 31. 《The Craftsman》创刊号的草图和图片...…………………………...........80 32. 1915 年 8 月版和 9 月版《House & Garden》中分别刊登的《Vogue》和《Vanity Fair》广告。………………………………...………………….81 33. 《House Beautiful》和《House & Garden》的艺术封面。 ………………………………..82 34. 筹集粮食帮助赢得战争是 House & Garden 和其他杂志在整个战争期间反复讨论的主题之一……………………………………………………..87 35. Country Life 对美国士兵的致敬…………………………………………………………...88 36. House Beautiful 1918 年 3 月封面底部的一则通知敦促读者将杂志转发给邮政局,以便将其送到“前线”的美国士兵手中…….....90 37. 1875 年左右,密苏里州圣路易斯中央杂志排版室的全女性员工……………………………………………………………………………….....93 38. 第一次世界大战后 House & Garden 和 House Beautiful 的封面…………...…96 39. House Beautiful 1919 年的“Western Number”………………………………………………………………97