vermicompost是一种堆肥,是通过Vermicomposting过程产生的,它涉及使用earth将有机物分解为营养丰富的肥料。此过程是回收有机废物,减少垃圾填埋场中废物并为植物创造可持续的有机肥料来源的绝佳方法。Vermicomposting的关键好处之一是它具有有益的微生物富集土壤的能力。这些微生物在促进土壤健康和生育方面起着至关重要的作用,因为它们分解有机物并将其转化为植物可以使用的营养。通过将earth引入堆肥过程中,我们可以显着提高所得vermicompost中的微生物多样性和丰度。在ver骨上存在许多不同类型的微生物,包括细菌,真菌,原生动物和线虫。这些微生物在复杂的相互作用网络中共同起作用,以分解有机物并使植物可用。例如,细菌负责分解简单的糖和碳水化合物,而真菌分解了更复杂的有机化合物,例如木质素和纤维素。除了分解有机物外,Vermicompost中的微生物还有助于稳定土壤聚集体并改善土壤结构。这是因为它们分泌多种物质,包括多糖,蛋白质和酶,这些物质有助于将土壤颗粒结合在一起并产生稳定的土壤聚集体。反过来,这可以改善水渗透和保留率,减少侵蚀,并为植物生长创造更有利的环境。Vermicompost的另一个重要好处是它抑制植物疾病和害虫的能力。这是因为Vermicompost中的微生物群落包含许多对植物病原体和
A 科学质量 A.1 研究计划的目标、相关性和动机 该研究计划有两个主要目标:增加设计和提供基于 RNA 的基因治疗药物所需的技术知识,并在人类疾病的五大领域(遗传病、癌症、代谢/心血管疾病、神经退行性疾病和炎症/感染性疾病)中确定有希望的候选药物/基因。 过去几十年来,人们对人类疾病治疗方式的看法发生了巨大转变。通过全球对药理学的重新思考而开发出的分子个性化治疗已经成为大大提高治疗效果的雄心勃勃的目标。 对高度特异性新药的需求源于对导致人类疾病的分子和细胞事件的理解的惊人进步。事实上,大的分子多样性并不是罕见遗传性疾病的唯一标志,而是人类最常见疾病的发病机制的基础。癌症就是一个典型案例:很明显,具有相似临床和表型的肿瘤疾病可能因涉及不同的致病突变的致癌基因和肿瘤抑制基因而彼此不同,而专门针对改变的蛋白质甚至基因突变的创新方法显示出很高的疗效。因此,开发针对广泛靶点的药物不仅成为罕见疾病治疗的原则,而罕见疾病往往被制药公司的优先事项所忽视,而且也是全球新治疗方法的基础,即恰当定义的“精准医疗”。为了完成这项任务,有必要探索治疗策略,这些策略超越了费力地识别适合酶、转运蛋白和通道关键调节域的小化学分子。相反,需要改变范式,开发一类共享共同合成和递送平台的药物,原则上可以以前所未有的精度作用于任何类别的蛋白质。显然,核酸的非凡力量和灵活性使这些分子成为这项任务的理想工具,应用范围几乎无限。 RNA 疫苗在控制 COVID-19 大流行中的作用提供了直接、令人印象深刻的证据,表明可以快速有效地开发针对特定目标的 RNA 药物。虽然 mRNA 疫苗的成功以及使用 CRISPR/Cas9 技术进行靶向基因组修饰的影响最近引发了人们对 DNA/RNA 治疗应用的极大兴趣,但应该记住,基于 DNA 的疗法早在三十多年前就在单基因疾病的基因治疗领域开创和发展。在这个转化医学的辉煌例子中,分子理解,开发将转基因导入受影响细胞的技术以及构建安全的递送平台,使人们在纠正各种先天性代谢错误方面取得了临床成功。在这一充满挑战的过程中,意大利科学发挥了重要作用,我们国家可以依靠该领域的成熟技术和设施。现在,基因治疗的潜力已经远远超出了更换有缺陷的基因产物。靶向基因校正(“基因编辑”)已被证明可有效治疗最常见的血液遗传疾病血红蛋白病,而嵌合抗原受体在患者 T 细胞中的表达(CAR-T)已被证明是一种新颖、成功的治疗方法,可用于治疗复发/难治性 B 细胞恶性肿瘤患者。依靠这些新技术的卓越中心群,该计划的一个主要目标是迅速扩大这些治疗选择。事实上,虽然意大利在先进基因治疗药物(AGTMP)领域的基础和临床前研究成果颇丰并得到国际认可,但将研究成果转化为临床治疗却往往有限。为此,需要制定一项雄心勃勃的国家计划,用于创建/加强药品生产基础设施、创新型 AGTMP 项目管理以及培训和咨询中心。就后者而言,学术界在将 AGTMP 项目转化为临床治疗时目前面临的主要瓶颈之一是缺乏在 GMP 条件下对这些产品进行工艺开发、扩大规模和生产的能力;这通常导致项目在第一次原理验证后就被放弃,少数幸存下来的项目还需要高昂的成本和漫长的拖延。因此,该计划的一个关键部分是在这个新兴的科学和健康领域对研究人员和临床操作员进行高级培训和资格认证。具体而言,国家中心将利用现有的经验和基础设施,实施 AGTMP 的开发过程,从早期的临床前研究到临床应用,使其他成员也能享受其服务。根据国家战略和现有举措,将通过三个层面实施:i) 细胞工艺和检测开发、载体制造和临床前研究设施;ii) 现有和改造后的细胞工厂,经授权使用体细胞制造基因疗法;iii) 服务和教学中心。一旦全面投入运营,预计每年的生产能力将达到 250-300 种基因治疗药物产品,可供国家中心的所有成员、全球学术机构和遍布全国的私营公司使用。
当前的基因治疗模型涉及逆转录病毒介导的遗传材料转移到源自各种体细胞组织的细胞中,包括造血系统的细胞,成纤维细胞,肝细胞,内皮细胞和成肌细胞(1、2)。我们先前已经描述了一种通过小鼠皮肤成纤维细胞逆转录病毒感染的基因产物传递方法(3)。我们先前在成纤维细胞研究中使用的转导基因是人和狗因子IX cDNA(3,4)。尽管在组织培养中可以实现高水平的持续性,而当在啮齿动物的同种异体移植中移植时,这些成纤维细胞仅在短时间内就产生了大量因子IX(3,5)。从理论上讲,体内表达的短期可能归因于不同的因素:(i)宿主对外源性因子IX的免疫反应; (ii)移植后外国细胞的破坏; (IIM)一旦将转导细胞移植到动物的转移基因的转录基因转录的特异性下降。已经表明(3,5),植入改良的成纤维细胞后,对人类因子IX的抗体存在,这至少可以解释,部分原因是第IX因子的短期。在这项工作中,使用不同的启动子来控制8-半乳糖苷酶的表达,我们证明,在组织培养中,长期表达可以轻松获得,但指导感兴趣基因转录的启动子的类型可能是决定体内长期表达的关键因素之一。
意识在塑造现实中的作用是印度哲学和量子物理学的核心主题。印度哲学传统,尤其是那些植根于吠檀多哲学的哲学传统,主张意识(阿特曼)作为基本现实的首要地位。在量子物理学中,观察者效应表明观察行为会影响粒子的行为,凸显了意识与量子世界之间不可分割的联系。印度哲学中的意识与量子物理学中的观察者效应之间的相似性为深刻思考感知和现实的本质打开了一扇大门(Radhakrishnan,S. 1958;Menon,S. 2015;Ray,PK 2003;Mohanty,AK 2012;Nader,T.,& Orme-Johnson,D. 2013)。我们的集体意识能否在塑造宇宙结构方面发挥作用,就像观察者塑造量子现象一样?
植物半胱氨酸 - 蛋白酶(Cysprot)代表一种良好的蛋白水解酶类型,该酶履行严格调节的生理功能(衰老和种子发芽等)和防御作用。本文集中于帕帕因 - 蛋白酶蛋白酶C1a(Family C1,CA氏族)及其抑制剂植物囊蛋白(Phycys)。尤其是,审查了蛋白酶抑制剂的相互作用及其在整个植物一生中的特定途径的相互参与。c1a cysprot和phycys已被分子表征,比较序列分析已鉴定出共有的功能基序。可以在被子植物中已识别的Cysprot和Phycys数量之间建立相关性。因此,进化力可能已经确定了囊蛋白在这些物种中内源性和害虫性蛋白酶上的控制作用。用荧光蛋白标记蛋白酶和抑制剂揭示了在瞬时转化的洋葱表皮细胞中内质网网络中亚细胞定位的常见模式。通过双分子荧光互补证明了进一步的体内相互作用,这表明它们参与了相同的生理过程。
I.在印度政府制定并生效的消防法律的指导下,印度的消防安全受到《国家建筑法典》 2021的管辖和监督。为大学生,医疗设施,住宅,公寓,零售中心和其他商业市场的旅馆都是受这些行为和法律管辖的住宅和商业结构。建筑物预防火灾的能力由防火墙,地板和隔间等特征以及消防竖井,避难所,火灾检测和抑制系统以及出口路线来证明。[Himoto,2020年]。这些法律规定的建筑物的火灾安全性绩效需要许多类似的要素,例如防止点火,提供安全的出口和支持消防努力,预防火力传播到附近的结构以及结构的崩溃。但是,法规的条件仅是为了维持公共资产的最低保护,同时遵守宪法限制,以维护所有者的结构财产权。因此,遵循规则并不能保证不会发生大火造成巨大损失。[Himoto,2020年]。A.火灾期间的功能耐用性创建了功能连续性的一般性,以说明结构在火灾后的防火方面的功能很好。通过减少损坏的数量和损害,结构尽快从火灾中恢复的能力称为功能连续性。此外,与刚性相比,这种普遍性可能被认为是独特的。通过“系统能够在可观的偏斜参数中排斥重大干扰并在可观的时间内恢复,乳液成本和风险恢复的能力提供了广泛的僵硬定义。”功能连续性指定的“火力刚度”与量化框架一起描述了。本框架可以提供有关结构在消防安全方面的表现良好的新观点,该框架可以用来以当前监管框架在当前的监管框架下以不可能的方式实现高级安全。鉴于刚性在结构的功能中的重要性,这项工作的目的是创建一种彻底,合理的方法来评估仅考虑风的结构的刚度。为了增强对结构僵化的理解并促进其评估,先前的部分检查了相关文献并确定话语中的差距。此外,这些部分还提供了研究的目标,方法,支持数据和结论。三种特征性火灾模式是 - •一场完全发达的火,•稳定的火,•旅行的火,
b“蛋白质折叠是一个细微的过程,由原代氨基酸序列和细胞蛋白质质量控制机制编码并取决于错误折叠的蛋白质可以汇总成有毒的寡聚物或淀粉样蛋白原纤维,并与包括阿尔茨海默氏症和帕金森氏病以及II型糖尿病在内的疾病有关。这些淀粉样蛋白沉积物具有共同的跨结构,无论其主要氨基酸序列如何。最近的研究表明,生物分子冷凝物的形成是某些淀粉样蛋白蛋白质固有的另一种共同点。冷凝物的新兴生物物理特性可以调节蛋白质聚集;因此,了解淀粉样蛋白形成的结构和动力学基础以及蛋白质质量控制机制对于理解蛋白质错误折叠疾病和治疗剂的下游发展至关重要。本期特刊需要进行多样化和全面的概述,这些概述说明了来自生物物理,生化或细胞生物学观点的蛋白质错误折叠和神经退行性疾病。”
1 Systematik,Biodovervortät和Evolution der Pflanzen,Ludwig-Maximilians-Universitätmünchen,Menzinger Str。67, 80638 Munich, Germany 2 Centre for Australian National Biodiversity Research (a joint venture of Parks Australia and CSIRO), Clunies Ross Street, Canberra ACT 2601, Australia 3 School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia 4 National Herbarium of New South Wales, Botanic Gardens of Sydney, Locked Bag 6002, Mount Annan,新南威尔士州2567,澳大利亚5号西澳大利亚州植物标本室,生物多样性,保护和景点系,锁定袋104,宾利送货中心,宾利,西澳大利亚州宾利6983,澳大利亚6澳大利亚6983年6983年6983年6983年6983年6983年,阿德莱拉德大学,阿德拉德大学,南澳大利亚州阿德拉德大学,南澳大利亚南澳大利亚州5005 7 National Biovipty DNA图书馆,澳大利亚州3010,公园3010101010101011维多利亚,墨尔本,维多利亚州3004,澳大利亚 *通讯作者:e.joyce@lmu.de
5-甲基胞霉素(5MC)是控制基因组寄生虫的广泛的沉默机制。在真核生物中,5MC在寄生虫控制以外的基因调节中发挥了复杂的作用,但在许多谱系中也丢失了5MC。保留5MC的原因及其基因组后果仍然很少理解。在这里,我们表明,与动物的动物Appalachense密切相关的原生物具有转座子和基因体甲基化,这是一种让人联想到无脊椎动物和植物的模式。出乎意料的是,源自病毒插入的变性菌中的高甲基化基因组区域,包括数百种内生巨大病毒,占蛋白质组的14%。使用抑制剂和基因组测定的组合,我们证明5MC使这些巨大病毒插入沉默。此外,替代性变性分离株显示了多态性巨型病毒插入,高光照明动态感染过程,内生源化和净化过程。我们的结果表明,5MC对于新获得的病毒DNA在真核基因组中的控制性至关重要,使变形虫成为了解真核DNA的杂种起源的独特模型。
防御肽可保护多细胞真核生物免受感染。在生物医学科学中,一个主要的概念框架是将防御肽作为宿主防御肽(HDPS),它们是双功能肽,具有直接的抗菌和免疫调节活性。到目前为止,植物中还没有报告HDP,并且植物科学界尚未捕获HDP的概念。植物科学因此缺乏概念框架,该概念框架将协调旨在发现植物HDP的研究工作。在这篇观点文章中,我使用了文献计量和文献调查方法来提高对植物科学家中HDP概念的认识,并鼓励旨在发现植物HDP的研究工作。这种发现将丰富我们对植物免疫系统功能和演变的理解,并为我们提供新的分子工具来制定控制作物疾病的创新策略。
