抽象的花色苷是园艺作物中的重要质量特征。转录因子(TFS)在花青素的生物合成中起关键的调节作用。许多TF在园艺作物中众所周知是花青素生物合成的转录激活剂,而最近已经承认抑制花青素合成的TFS。在这里,我们关注的是最近在园艺作物中对TF的作用和机制负调节花青素生物合成的最新进展。我们讨论了TFS抑制激活复合物的功能,调节阻遏物的TFS和抑制基序,以及转录后调节,翻译后修饰以及TFS的甲基化以及抑制峰基素生物合成的甲基化。这些信息将为这些TF的未来利用提供见解,以提高园艺作物的质量。
当前的环境和气候变化对植物 - 病因相互作用的结果有明显的影响,进一步强调了非生物应力强烈影响各级生物相互作用。例如,生理参数(例如植物结构和组织组织)以及原发性和专业的代谢受环境限制的影响,并且这些结合使单个植物成为给定病原体的或多或少适合的宿主。此外,非生物应力会影响植物防御和病原体毒力的及时表达。的确,几项研究表明,温度的变化以及水和矿物营养物的可用性会影响植物防御基因的表达。毒力基因的表达(已知对于疾病爆发至关重要)也受环境条件的影响,可能会修饰现有的病原体,并为新兴的病原体铺平道路。在这篇综述中,我们总结了我们当前对植物和相互作用病原体一侧转录水平上生物相互作用的影响的知识。我们还对非生物和生物胁迫的四种不同组合进行了元数据分析,该组合鉴定了197个常见的调制基因,其基因本体论术语中具有强烈富集的基因。我们还描述了选定的防御相关基因的多元素特定响应。
Sophia Weiner,Sauer的Mathias。分析蛋白质组学分析的制备和数据临床蛋白质组学。2022。II。 Sophia Weiner,Sauer,Laia Montolia,Andrea L. Blessed,Nicholas J. Ashton。 Rauramaa,Mikko Hiltunen,Rosa-Neto Pedro,Blennow,Johan Gobom。 上面的洪水蛋白研究对阿尔茨海默氏症连续体的保护: manusscript。 iii。 Sophia Weiner,Mathias Sauer,Brinkmalm,Julius Constantine,Fernandes Fernandes,Becker,Becker,BengtNellgård,Keti Dalla,Douglas Galasko,Henrig Zetterberg,Blennow,Blennow,Johan Gobom。 scrn1:在阿尔茨海默氏症的灾难中可用脑大脑。 阿尔茨海默氏症和痴呆症。 2023。 iv。 蛋白质组学分析明显区分的脑杂交遗传声信号深层亚型。 翻译科学医学。 2025。 V. Imogen J. 定量与介质蛋白相关的接壤中的Pepts颗粒。 manusscript。II。Sophia Weiner,Sauer,Laia Montolia,Andrea L. Blessed,Nicholas J. Ashton。 Rauramaa,Mikko Hiltunen,Rosa-Neto Pedro,Blennow,Johan Gobom。上面的洪水蛋白研究对阿尔茨海默氏症连续体的保护:manusscript。iii。Sophia Weiner,Mathias Sauer,Brinkmalm,Julius Constantine,Fernandes Fernandes,Becker,Becker,BengtNellgård,Keti Dalla,Douglas Galasko,Henrig Zetterberg,Blennow,Blennow,Johan Gobom。scrn1:在阿尔茨海默氏症的灾难中可用脑大脑。阿尔茨海默氏症和痴呆症。2023。iv。蛋白质组学分析明显区分的脑杂交遗传声信号深层亚型。翻译科学医学。2025。V. Imogen J.定量与介质蛋白相关的接壤中的Pepts颗粒。manusscript。乔尔·西伦(Joel Simren),伊莫因斯(Imogen)。 Harro Seelaar,RAC,Robert Laforce,Caroline Graff,Daniela Galimmberti,Rik Vandenberg,Sorbi,Otto,Pasquier's Florence,Simon,Chris R. Butler,Chris R. Butler, Isabelle Le Ber,Elizabeth Finger,Maria Carmela Tartaglia,Mario Masellis,James B. Rowe,Matthis Synofzik,Fermin Moreno,Borroni Barbara,Blenhow,Henrik Zetterberg*,Jonathan D. Rohrer*,Johan Gobom*。JohnRönnholm,Mathias Sauer,Johanna Nilsson,John Van Swieten,Liize C. Jiskoot,Harro Seelaar,Racel St. Valle,Rik Vandenberghe,Mendonça的Alexander,Tiraboschi Pietro,Santana的Isabel,Alexander Gerhard,Johannes Levin,Sorb,Sorb,Sorb,Sorb,Isabelle Le Ber,Elizabeth,Elizabeth,James B. Rowe。 Bernno,Blessings,Blenharow的Bill,Jonathan,D。Rohrer*,Johan Gobom*。
这项研究研究了使用市售活性炭(AC)同时回收贵金离子。在通过微波辐射增强的封闭批处理反应器中进行吸附,从而产生高压和高温条件。检查了溶液的交流质量,过程,过程,温度,pH和离子强度的影响。高温,高压和微波辐射被证明是化学激活的有效手段,导致了近100%的吸附效率。建议微波辐射显着增加活性碳表面的局部温度,从而改变吸附机理。与没有微波支持的传统批处理反应堆相比,这种增强导致了更高的回收率。结果证明了该方法有效金属回收的重要潜力。
图1个极化子跳跃在WO 3中诱导的双波段吸收。A在不同时间间隔的GalvanoStatic电荷插入后WO 3膜的原位光学透射率。b,在450 nm(表示可见范围)和1100 nm(代表NIR范围)的WO 3膜的电荷能力的函数。c,od光谱是波长的函数,以及北极理论的吸收系数的理论计算。理论曲线已分解为下两个面板中的两个偏振子峰。d,在电荷插入过程中在不同时间的WO 3(W 4 F峰)膜的XPS光谱。e,d中XPS光谱得出的相应的W值的比例。XPS光谱和其他电荷插入状态的比例可在图中看到S6。f,C(A 1,A 2;左侧尺度)的两个峰的振幅显示为LI插入时间的函数,并将其与位点饱和理论获得的跳跃效率(H.E;右手尺度)相比。H.E.通过45分钟XPS的插值在D下降到零,从而获得了15和30分钟的点。
共振非弹性X射线散射(RIX)是一种广泛使用的光谱技术,可提供对原子,分子和固体的电子结构和动力学的访问。但是,RIX需要一个狭窄的带宽X射线探针才能达到高光谱分辨率。从X射线游离电子激光器(XFEL)传递能量单色光束(XFEL)的挑战限制了其在几次实验中的使用,包括用于研究高能量密度系统。在这里,我们证明,通过将XFEL自发自发发射(SASE)的测量与RIX信号相关联,使用神经代理的动态内核反卷入率,我们可以实现比起X-Ray bardeming x-ray barde-bardwidth bander-band banders off band barde the bard bands faster of the Electonic结构的分辨率。我们进一步展示了该技术如何允许我们区分Fe和Fe 2 O 3的价结构,并提供了对温度测量值以及温度温度化合物中的M壳结合能的估计值。
摘要:在许多行业中,使用腐蚀抑制剂的使用是占普遍的,以减少与腐蚀环境接触的金属和合金的腐蚀。天然提取物通常用于保护金属材料免受腐蚀。这些提取物作为腐蚀抑制剂的效率通常通过电化学测试评估,其中包括减肥测量等技术。在这项研究中研究了neem提取物(Azadirachta Indica)叶的提取物对0.1m HCl和0.1m NaOH溶液中锌金属腐蚀抑制的影响。索斯特技术用于静脉叶萃取。使用电化学和减肥技术研究了锌金属的腐蚀抑制。在含有0.1m HCl,0.1M NaOH和不同浓度的neEM提取物的测试溶液中进行了实验。通过溶解HCl的分析试剂(AR)(37%)和0.1M NaOH碱(40%)的分析试剂(AR)溶液(AR)溶液(40%)。还制备了用作抑制剂的INEM提取物的1 ppm – 5 ppm。100 mL测试溶液用于减肥测量。结果表明,在所有温度研究中,发现NEEM提取物抑制0.1m HCl和0.1M NaOH溶液中的锌腐蚀。提取溶液的浓度(PPM)的增加会降低0.1m HCl和0.1M NaOH溶液中锌腐蚀的速率。因此,它提高了抑制效率。腐蚀速率随时间增加,但随着提取溶液浓度的增加而降低。1。最后,发现印em叶提取物是一种极好的潜在腐蚀抑制剂。简介
Andrea Timoncini、Federica Costantini、Elena Bernardi、Carla Martini、Francesco Mugnai、Francesco Paolo Mancuso、Enrico Sassoni、Francesca Ospitali、Cristina Chiavari,《对变化环境中户外青铜和大理石制品中细菌群落的洞察》,《整体环境科学》850 (2022) 157804,第 1-14 页。
摘要:肉毒乳梭交产生肉毒杆菌毒素(BONTS),导致一种罕见但致命的食物中毒类型,称为食物中毒。本综述旨在提供有关细菌,孢子,毒素和肉毒杆菌的信息,并描述使用物理治疗(例如,加热,压力,辐照和其他新兴技术)的使用来控制食物中这种生物学危害。由于这种细菌的孢子可以抵抗各种严酷的环境条件,例如高温,因此,A型肉毒杆菌孢子的12杆孢子的热灭活仍然是食品商业灭菌的标准。然而,非热物理治疗的最新进展是对热灭菌的替代方案,并有所限制。低 - (<2 kgy)和培养基(3-5 kgy) - 剂量电离辐射分别有效地减少营养细胞和孢子的对数。但是,需要非常高的剂量(> 10 kgy)才能灭活BONT。高压加工(HPP)即使在1.5 GPA时也不会使孢子失活,并且需要热量组合才能实现其目标。其他新兴技术也对植物细胞和孢子表现出了一些希望。但是,它们对肉毒杆菌的应用非常有限。与细菌有关的各种因素(例如,营养阶段,生长条件,损伤状况,细菌类型等)食物矩阵(例如成分,状态,pH,温度,AW等。)和该方法(例如电源,能量,频率,从源到目标等的距离等)影响这些处理对肉毒杆菌的效率。此外,不同物理技术的作用方式是不同的,这提供了结合不同物理治疗方法以实现添加剂和/或协同作用的机会。本评论旨在指导决策者,研究人员和教育者使用物理治疗来控制肉毒杆菌危害。
摘要:功能遗传学学的持续挑战是开发用于精确操纵表观遗传标记的工具。这些工具将允许从基于因果关系的发现转移到基于因果关系的发现,这是对机械原理得出结论的必要步骤。在这篇综述中,我们描述并讨论了为影响表观遗传标记而开发的工具和技术的优势和局限性,并且可以用来研究其对核和染色质结构,转录以及它们在植物细胞命运和发育中的直接影响。一方面,表观基因组范围的方法包括染色质修饰者或读取器的药物抑制剂,针对组蛋白标记的纳米体或表达经过修饰的组蛋白或突变蛋白染色质效应子的纳米体。另一方面,基因座特异性方法包括靶向染色质的精确区域,工程蛋白能够修改表观遗传标记。早期系统将效应子与识别特定DNA序列(锌指或故事)的蛋白质结构融合在一起,而最新的DCAS9方法通过RNA-DNA相互作用运行,从而为工具设计提供了更多的功能和模块化。最近在植物中测试了“第二代”,嵌合DCAS9系统的当前发展,旨在更好地靶向效率和修改能力。最后,最近的概念验证研究预测甚至限制工具,例如可诱导/可切换系统,这些工具将允许对特定染色质标记发生变化的分子事件进行时间分析。