传统上,电离辐射(例如X射线、伽马射线、β粒子以及快中子和热中子)被用于诱发这些作物的突变。然而,电子束、质子束和重离子束等新能源正日益为突变育种增添新的视角。虽然单独诱发突变或与常规育种相结合有可能产生变异,但基因组资源的可用性深刻影响着加速遗传作物改良的步伐。下一代测序 (NGS) 技术的出现导致了广泛分子资源的开发,包括转录组序列数据、遗传和物理图谱以及分子标记,使性状定位和标记辅助育种更快、更可靠。为了快速跟踪豆类作物改良,必须使用辐射来扩大变异并同时开发详尽的基因组资源。
摘要:非生物胁迫,主要是干旱、高温、盐碱、寒冷和涝渍,对谷物作物产生不利影响。它们限制了全球大麦的生产并造成了巨大的经济损失。多年来,人们已鉴定出大麦在各种胁迫下的功能基因,随着现代基因编辑平台的引入,抗逆性基因改良也发生了新的转变。特别是,成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 是一种用于精确突变和性状改良的强大而多功能的工具。在这篇综述中,我们重点介绍了主要大麦生产国受胁迫影响的地区及其相应的经济损失。我们整理了大约 150 个与抗逆性相关的关键基因,并将它们组合成一个物理图谱,用于潜在的育种实践。我们还概述了精确碱基编辑、主要编辑和多路复用技术在有针对性性状修饰中的应用,并讨论了当前的挑战,包括高通量突变体基因分型和基因型依赖性在遗传转化中的应用,以促进商业育种。所列出的基因可以抵消干旱、盐度和营养缺乏等主要压力,相应基因编辑技术的潜在应用将为大麦改良以提高其气候适应能力提供参考。
摘要:在大多数作物育种计划中,产量增长率不足以应对全球人口迅速增长导致的粮食需求增长。在植物育种中,作物优良品种的开发受到作物生长周期过长的限制。鉴于新品种的生产涉及杂交、选择和测试等多个阶段,因此可能需要一二十年才能创造出新品种。缓解粮食短缺问题和提高粮食安全的一种可能方法是快速开发优良品种。长期以来一直采用的传统耕作方法降低了作物的遗传变异性。为了改善作物的产量、品质和抗生物和非生物胁迫能力相关的农艺性状,人们已经采用了多种传统和分子方法,包括遗传选择、诱变育种、体细胞克隆变异、基于全基因组序列的方法、物理图谱和功能基因组工具。然而,使用可编程核酸酶、成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关 (Cas) 蛋白的基因组编辑技术的最新进展为新植物育种时代打开了大门。因此,为了提高作物育种的效率,世界各地的植物育种者和研究人员正在使用新策略,例如快速育种、基因组编辑工具和高通量表型分析。在这篇综述中,我们总结了作物育种几个方面的最新发现,以描述植物育种实践的演变,从传统到现代快速育种与基因组编辑工具相结合,旨在每年生产具有所需特性的作物代。
D Shashibhushan 和 Ashish Reddy Muchanthula 摘要 植物育种是一门改变植物性状以产生所需特性的科学。为了改善与作物各种性状相关的农艺性状,已经使用了几种常规和分子方法,包括遗传选择、基于全基因组序列的方法、物理图谱和功能基因组工具。然而,使用可编程核酸酶和 CRISPR 相关 (Cas) 蛋白的基因组编辑技术的最新进展为新的植物育种时代打开了大门。因此,为了提高作物育种的效率,世界各地的研究人员正在使用新策略,例如快速育种、基因组编辑工具和高通量表型分析。在这篇综述中,我们总结了作物育种几个方面的最新发现,以描述植物育种实践从传统到现代快速育种的演变。 关键词:脱氧核糖核酸 (DNA)、核糖核酸 (RNA) CRISPR、基因沉默、基因组编辑、反向育种 简介 农业始于大约 10,000 年前。从那时起,人类在不知不觉中就选择植物来满足自己的需求。首先,只有自然界提供的性能最好的植物才会被选择和保留。自发出现的有用特性通过人类选择培育成某些作物,通常是违背自然选择的;因此,在没有任何科学方法的情况下进行植物育种。当时孟德尔遗传定律的知识还不为人所知。19 世纪末,孟德尔定律被发现,这加速了植物改良。1953 年,沃森和克里克提出了 DNA 双螺旋模型,大大增加了人们对遗传物质的理解。这是植物育种的一个重大转折,因为针对 DNA 的植物改良开始曝光,第一个是 20 世纪 60 年代的突变育种,后来是 20 世纪 80 年代的转基因技术。从那时起,遗传学科学从不同的 DNA 分析方法到标记辅助选择,突飞猛进。虽然已经发现了许多不同的技术,但它们仍然是独一无二的,每种技术都适用于特定情况。多种技术的出现为植物育种者提供了培育新品种所需的“工具”。为什么这是一个永无止境的过程?“植物育种是一个连续的过程”。这句话自古以来就没有过时。为了满足消费者的需求,植物育种在粮食安全和食品安全中发挥着重要作用。然而,由于人口的急剧增长,植物育种在全球范围内面临着食品质量和数量的问题。在这个快节奏的时代,消费者更喜欢即食食品,而营养质量却有所下降。此外,气候变化导致的天气条件变化正在导致高温和干旱胁迫;因此,世界各地的农民都面临着严重的产量损失。预计到 2050 年,世界人口将达到 100 亿。考虑到这一点,必须在有限的土地上利用有限的资源培育新品种。古老的植物育种实践虽然没有失去其重要性,但仅靠这些还不足以满足当前的粮食需求状况 (Raza et al ., 2019) [21] 。此外,植物育种也面临着自身的挑战。它的作用是创造新的等位基因组合,固定所需的等位基因并控制基因流动。考虑到上述标准,植物育种应该是一个永恒的关注和进步的主题。植物育种,从传统方法到如今与现代生物技术工具的结合,在过去几年中发展迅速。随着时间的推移,人们在为不同目的培育植物方面取得了许多进步。每一项进步,
1. Ferrarini M、Moretto M、Ward JA、Surbanovski N、Stevanovic V、Giongo L、Viola 88 R、Cavalieri D、Velasco R、Cestaro A、Sargent DJ。2013 年。对 89 PacBio RS 平台进行叶绿体基因组测序和从头组装的评估。BMC 基因组学 14:670。91 2. Stadermann KB、Weisshaar B、Holtgräwe D。2015 年。仅 SMRT 测序甜菜 (Beta vulgaris) 叶绿体基因组的从头组装。BMC 93 生物信息学 16:295。 94 3. Pucker B、Holtgräwe D、Stadermann KB、Frey K、Huettel B、Reinhardt R、95 Weisshaar B。2019 年。染色体水平序列组装揭示了拟南芥 Nd-1 基因组及其基因集的结构。PLoS One 97 14:e0216233。98 4. Altschul SF、Gish W、Miller W、Myers EW、Lipman DJ。1990 年。基本局部比对搜索工具。分子生物学杂志 215:403-410。100 5. Koren S、Walenz BP、Berlin K、Miller JR、Bergman NH、Phillippy AM。2017 年。Canu:通过自适应 k-mer 加权和 102 重复分离实现可扩展且准确的长读组装。基因组研究 27:722-736。103 6. Jansen RK、Kaittanis C、Saski C、Lee SB、Tomkins J、Alverson AJ、Daniell H. 2006. 基于完整叶绿体基因组序列的葡萄科(Vitaceae)系统发育分析:分类单元抽样和系统发育方法对解决蔷薇科间关系的影响。BMC 进化生物学 6:32。107 7. Goremykin VV、Salamini F、Velasco R、Viola R. 2009. 葡萄的线粒体 DNA 和猖獗的水平基因转移问题。分子生物学与进化 26:99-110。110 8. Wick RR、Schultz MB、Zobel J、Holt KE。 2015. Bandage:从头基因组组装的交互式可视化。生物信息学 31:3350-2。112 9. Wheeler TJ、Eddy SR。2013. nhmmer:使用概要 HMM 进行 DNA 同源性搜索。113 生物信息学 29:2487-2489。114 10. Chan PP、Lowe TM。2019. tRNAscan-SE:在基因组序列中搜索 tRNA 基因,第 1-14 页。在 Kollmar M(编辑)的《基因预测:方法和协议》中,116 2019/04/26 编辑,第 1962 卷。Springer New York,纽约。117 11. Lowe TM、Eddy SR。 1997. tRNAscan-SE:一种改进基因组序列中 118 种转移 RNA 基因检测的程序。核酸研究 25:955-964。119 12. Laslett D、Canback B。2004. ARAGORN,一种检测核苷酸序列中的 tRNA 基因和 120 种 tmRNA 基因的程序。核酸研究 32:11-16。121 13. Tillich M、Lehwark P、Pellizzer T、Ulbricht-Jones ES、Fischer A、Bock R、Greiner 122 S。2017. GeSeq - 多功能且准确的细胞器基因组注释。123 核酸研究 45:W6-W11。 124 14. Lohse M、Drechsel O、Kahlau S、Bock R. 2013. OrganellarGenomeDRAW——一套用于生成质体和线粒体基因组物理图谱并可视化表达数据集的工具。核酸研究 41:W575-581。127 15. Lohse M、Drechsel O、Bock R. 2007. OrganellarGenomeDRAW (OGDRAW):128 一个用于轻松生成高质量自定义质体和 129 线粒体基因组图形图的工具。当代遗传学 52:267-274。130